Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7535, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016938

RESUMO

Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region's sensitivity to future climate variability.

2.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220162, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150196

RESUMO

The Southern Ocean upper-layer freshwater balance exerts a global climatic influence by modulating density stratification and biological productivity, and hence the exchange of heat and carbon between the atmosphere and the ocean interior. It is thus important to understand and quantify the time-varying freshwater inputs, which is challenging from measurements of salinity alone. Here we use seawater oxygen isotopes from samples collected between 2016 and 2021 along a transect spanning the Scotia and northern Weddell Seas to separate the freshwater contributions from sea ice and meteoric sources. The unprecedented retreat of sea ice in 2016 is evidenced as a strong increase in sea ice melt across the northern Weddell Sea, with surface values increasing approximately two percentage points between 2016 and 2018 and column inventories increasing approximately 1 to 2 m. Surface meteoric water concentrations exceeded 4% in early 2021 close to South Georgia due to meltwater from the A68 megaberg; smaller icebergs may influence meteoric water at other times also. Both these inputs highlight the importance of a changing cryosphere for upper-ocean freshening; potential future sea ice retreats and increases in iceberg calving would enhance the impacts of these freshwater sources on the ocean and climate. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

3.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220070, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150199

RESUMO

The 5-year Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) programme and its 1-year extension ENCORE (ENCORE is the National Capability ORCHESTRA Extension) was an approximately 11-million-pound programme involving seven UK research centres that finished in March 2022. The project sought to radically improve our ability to measure, understand and predict the exchange, storage and export of heat and carbon by the Southern Ocean. It achieved this through a series of milestone observational campaigns in combination with model development and analysis. Twelve cruises in the Weddell Sea and South Atlantic were undertaken, along with mooring, glider and profiler deployments and aircraft missions, all contributing to measurements of internal ocean and air-sea heat and carbon fluxes. Numerous forward and adjoint numerical experiments were developed and supported by the analysis of coupled climate models. The programme has resulted in over 100 peer-reviewed publications to date as well as significant impacts on climate assessments and policy and science coordination groups. Here, we summarize the research highlights of the programme and assess the progress achieved by ORCHESTRA/ENCORE and the questions it raises for the future. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

4.
Sci Data ; 10(1): 265, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164979

RESUMO

Oceanographic changes adjacent to Antarctica have global climatic and ecological impacts. However, this is the most challenging place in the world to obtain marine data due to its remoteness and inhospitable nature, especially in winter. Here, we present more than 2000 Conductivity-Temperature-Depth (CTD) profiles and associated water sample data collected with (almost uniquely) full year-round coverage from the British Antarctic Survey Rothera Research Station at the west Antarctic Peninsula. Sampling is conducted from a small boat or a sled, depending on the sea ice conditions. When conditions allow, sampling is twice weekly in summer and weekly in winter, with profiling to nominally 500 m and with discrete water samples taken at 15 m water depth. Daily observations are made of the sea ice conditions in the area. This paper presents the first 20 years of data collection, 1997-2017. This time series represents a unique and valuable resource for investigations of the high-latitude ocean's role in climate change, ocean/ice interactions, and marine biogeochemistry and carbon drawdown.

5.
Sci Adv ; 8(47): eadd0720, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417533

RESUMO

Ocean mixing around Antarctica exerts key influences on glacier dynamics and ice shelf retreats, sea ice, and marine productivity, thus affecting global sea level and climate. The conventional paradigm is that this is dominated by winds, tides, and buoyancy forcing. Direct observations from the Antarctic Peninsula demonstrate that glacier calving triggers internal tsunamis, the breaking of which drives vigorous mixing. Being widespread and frequent, these internal tsunamis are at least comparable to winds, and much more important than tides, in driving regional shelf mixing. They are likely relevant everywhere that marine-terminating glaciers calve, including Greenland and across the Arctic. Calving frequency may change with higher ocean temperatures, suggesting possible shifts to internal tsunamigenesis and mixing in a warming climate.

6.
Sci Adv ; 8(42): eade7006, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260676
7.
Nat Commun ; 13(1): 3400, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701425
8.
IBRO Neurosci Rep ; 12: 170-181, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35199098

RESUMO

Medial amygdala processes social/reproductive chemosensory input, and its projections to preoptic and hypothalamic areas evoke appropriate behavioral and physiological responses. We and others have shown that different chemosensory signals elicit differential responses in medial amygdala subregions and in adjacent main intercalated nucleus (mICN). The largely GABAergic mICN receives no direct chemosensory input but, as we show, mICN has functional circuit connections with medial amygdala that could be responsible both for mICN chemosensitivity and for a feedforward inhibitory effect on posterior medial amygdala; which, in turn would affect chemosignal response. mICN is subject to inhibition by dopamine and is probably regulated by neuropeptides and input from frontal cortex. Thus, mICN is in position to modify chemosensory processing in medial amygdala and behavioral responses to social signals, according to internal brain state. Patch-clamp recordings from neurons in each relevant nucleus in horizontal brain-slices, with electrical stimulation in adjacent nuclei, reveal multiple functional connections between medial amygdala subregions and mICN. We highlight a triangular circuit which may underlie mICN chemosensitivity and its potential for modifying chemosensory information transmitted to basal forebrain. Anterior medial amygdala, which receives most of the chemosensory input, connects to posterior medial amygdala directly and both areas send information on to basal forebrain. Anterior medial amygdala can also modulate posterior medial amygdala indirectly via the mICN side-loop, which also provides a pathway for modulation by cortical input or, when inhibited by dopamine, could allow a more automatic response - as proposed for other amygdala circuits with similar ICN side loops.

9.
Sci Adv ; 7(37): eabj4713, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516767

RESUMO

A long-standing paradox of marine populations is chaotic genetic patchiness (CGP), temporally unstable patterns of genetic differentiation that occur below the geographic scale of effective dispersal. Several mechanisms are hypothesized to explain CGP including natural selection, spatiotemporal fluctuations in larval source populations, self-recruitment, and sweepstake reproduction. Discriminating among them is extremely difficult but is fundamental to understanding how marine organisms reproduce and disperse. Here, we report a notable example of CGP in the Antarctic limpet, an unusually tractable system where multiple confounding explanations can be discounted. Using population genomics, temporally replicated sampling, surface drifters, and forward genetic simulations, we show that CGP likely arises from an extreme sweepstake event together with collective larval dispersal, while selection appears to be unimportant. Our results illustrate the importance of neutral demographic forces in natural populations and have important implications for understanding the recruitment dynamics, population connectivity, local adaptation, and resilience of marine populations.

11.
Nat Commun ; 12(1): 4948, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400630

RESUMO

Since the middle of the past century, the Western Antarctic Peninsula has warmed rapidly with a significant loss of sea ice but the impacts on plankton biodiversity and carbon cycling remain an open question. Here, using a 5-year dataset of eukaryotic plankton DNA metabarcoding, we assess changes in biodiversity and net community production in this region. Our results show that sea-ice extent is a dominant factor influencing eukaryotic plankton community composition, biodiversity, and net community production. Species richness and evenness decline with an increase in sea surface temperature (SST). In regions with low SST and shallow mixed layers, the community was dominated by a diverse assemblage of diatoms and dinoflagellates. Conversely, less diverse plankton assemblages were observed in waters with higher SST and/or deep mixed layers when sea ice extent was lower. A genetic programming machine-learning model explained up to 80% of the net community production variability at the Western Antarctic Peninsula. Among the biological explanatory variables, the sea-ice environment associated plankton assemblage is the best predictor of net community production. We conclude that eukaryotic plankton diversity and carbon cycling at the Western Antarctic Peninsula are strongly linked to sea-ice conditions.


Assuntos
Biodiversidade , Ciclo do Carbono , Camada de Gelo , Plâncton/fisiologia , Regiões Antárticas , Carbono/metabolismo , Diatomáceas , Ecossistema , Eucariotos , Microbiota , Plâncton/genética , Temperatura
12.
Sci Rep ; 11(1): 6760, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762612

RESUMO

The Atlantic sector of the Southern Ocean is the world's main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses-ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4-9.7 Sv) yielding larger rates than tracer-based estimates (3.7-4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m[Formula: see text] [Formula: see text] is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.

13.
Microorganisms ; 9(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672195

RESUMO

The relative flow of carbon through the viral shunt and the microbial loop is a pivotal factor controlling the contribution of secondary production to the food web and to rates of nutrient remineralization and respiration. The current study examines the significance of these processes in the coastal waters of the Antarctic during the productive austral summer months. Throughout the study a general trend towards lower bacterioplankton and heterotrophic nanoflagellate (HNF) abundances was observed, whereas virioplankton concentration increased. A corresponding decline of HNF grazing rates and shift towards viral production, indicative of viral infection, was measured. Carbon flow mediated by HNF grazing decreased by more than half from 5.7 µg C L-1 day-1 on average in December and January to 2.4 µg C L-1 day-1 in February. Conversely, carbon flow through the viral shunt increased substantially over the study from on average 0.9 µg C L-1 day-1 in December to 7.6 µg C L-1 day-1 in February. This study shows that functioning of the coastal Antarctic microbial community varied considerably over the productive summer months. In early summer, the system favors transfer of matter and energy to higher trophic levels via the microbial loop, however towards the end of summer carbon flow is redirected towards the viral shunt, causing a switch towards more recycling and therefore increased respiration and regeneration.

14.
PeerJ ; 9: e12679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036155

RESUMO

The Western Antarctic Peninsula (WAP) is a hotspot for environmental change and has a strong environmental gradient from North to South. Here, for the first time we used adult individuals of the bivalve Aequiyoldia eightsii to evaluate large-scale spatial variation in the biochemical composition (measured as lipid, protein and fatty acids) and energy content, as a proxy for nutritional condition, of three populations along the WAP: O'Higgins Research Station in the north (63.3°S), Yelcho Research Station in mid-WAP (64.9°S) and Rothera Research Station further south (67.6°S). The results reveal significantly higher quantities of lipids (L), proteins (P), energy (E) and total fatty acids (FA) in the northern population (O'Higgins) (L: 8.33 ± 1.32%; P: 22.34 ± 3.16%; E: 171.53 ± 17.70 Joules; FA: 16.33 ± 0.98 mg g) than in the mid-WAP population (Yelcho) (L: 6.23 ± 0.84%; P: 18.63 ± 1.17%; E: 136.67 ± 7.08 Joules; FA: 10.93 ± 0.63 mg g) and southern population (Rothera) (L: 4.60 ± 0.51%; P: 13.11 ± 0.98%; E: 98.37 ± 5.67 Joules; FA: 7.58 ± 0.48 mg g). We hypothesize these differences in the nutritional condition could be related to a number of biological and environmental characteristics. Our results can be interpreted as a consequence of differences in phenology at each location; differences in somatic and gametogenic growth rhythms. Contrasting environmental conditions throughout the WAP such as seawater temperature, quantity and quality of food from both planktonic and sediment sources, likely have an effect on the metabolism and nutritional intake of this species.

15.
R Soc Open Sci ; 7(9): 200603, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33047024

RESUMO

The Antarctic Circumpolar Current (ACC) dominates the open-ocean circulation of the Southern Ocean, and both isolates and connects the Southern Ocean biodiversity. However, the impact on biological processes of other Southern Ocean currents is less clear. Adjacent to the West Antarctic Peninsula (WAP), the ACC flows offshore in a northeastward direction, whereas the Antarctic Peninsula Coastal Current (APCC) follows a complex circulation pattern along the coast, with topographically influenced deflections depending on the area. Using genomic data, we estimated genetic structure and migration rates between populations of the benthic bivalve Aequiyoldia eightsii from the shallows of southern South America and the WAP to test the role of the ACC and the APCC in its dispersal. We found strong genetic structure across the ACC (between southern South America and Antarctica) and moderate structure between populations of the WAP. Migration rates along the WAP were consistent with the APCC being important for species dispersal. Along with supporting current knowledge about ocean circulation models at the WAP, migration from the tip of the Antarctic Peninsula to the Bellingshausen Sea highlights the complexities of Southern Ocean circulation. This study provides novel biological evidence of a role of the APCC as a driver of species dispersal and highlights the power of genomic data for aiding in the understanding of the influence of complex oceanographic processes in shaping the population structure of marine species.

17.
Chem Senses ; 2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32386197

RESUMO

The medial amygdala receives sensory input from chemical signals important in mammalian social communication. As measured by immediate early gene expression, its responses to different chemosignals differ in the spatial patterns of neuronal activation and in the types of cells activated. Medial amygdala projections to basal forebrain contibute to generation of appropriate behavioral responses and GABA neurons are important for these functions, both as interneurons and projection neurons. Here we investigate reponses of male golden-hamster medial amygdala neurons expressing immunoreactivity (-ir) for calbindin (CB), calretinin (CR) and parvalbumin (PV), calcium binding proteins (CBPs) which can distinguish different GABA-ergic neuron types. CB-ir and CR-ir cells both had significant responses to female hamster chemosignals and showed different spatial patterns across medial amygdala. Responses to chemosignals (from unfamiliar females) were significantly reduced in males with sexual experience, compared to naïve males. Medial amygdala did not express PV-ir cells and the adjacent intercalated nucleus, which has been implicated in medial amygdala chemosensory responses did not express any of the CBPs investigated here. This additional evidence for chemosensory specificity in the response of medial amygdala to social chemical signals, in cells characterized by CBP expression, suggests multiple GABA circuit elements may be involved in information processing for behavioral response.

18.
Sci Adv ; 5(8): eaav6410, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489364

RESUMO

Global climate is critically sensitive to physical and biogeochemical dynamics in the subpolar Southern Ocean, since it is here that deep, carbon-rich layers of the world ocean outcrop and exchange carbon with the atmosphere. Here, we present evidence that the conventional framework for the subpolar Southern Ocean carbon cycle, which attributes a dominant role to the vertical overturning circulation and shelf-sea processes, fundamentally misrepresents the drivers of regional carbon uptake. Observations in the Weddell Gyre-a key representative region of the subpolar Southern Ocean-show that the rate of carbon uptake is set by an interplay between the Gyre's horizontal circulation and the remineralization at mid-depths of organic carbon sourced from biological production in the central gyre. These results demonstrate that reframing the carbon cycle of the subpolar Southern Ocean is an essential step to better define its role in past and future climate change.

19.
Proc Natl Acad Sci U S A ; 116(27): 13233-13238, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213535

RESUMO

The overturning circulation of the global ocean is critically shaped by deep-ocean mixing, which transforms cold waters sinking at high latitudes into warmer, shallower waters. The effectiveness of mixing in driving this transformation is jointly set by two factors: the intensity of turbulence near topography and the rate at which well-mixed boundary waters are exchanged with the stratified ocean interior. Here, we use innovative observations of a major branch of the overturning circulation-an abyssal boundary current in the Southern Ocean-to identify a previously undocumented mixing mechanism, by which deep-ocean waters are efficiently laundered through intensified near-boundary turbulence and boundary-interior exchange. The linchpin of the mechanism is the generation of submesoscale dynamical instabilities by the flow of deep-ocean waters along a steep topographic boundary. As the conditions conducive to this mode of mixing are common to many abyssal boundary currents, our findings highlight an imperative for its representation in models of oceanic overturning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA