Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Dev Cogn Neurosci ; 66: 101356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364507

RESUMO

Adolescence is a period of rapid biobehavioral change, characterized in part by increased neural maturation and sensitivity to one's environment. In this review, we aim to demonstrate that self-regulation skills are tuned by adolescents' social, cultural, and socioeconomic contexts. We discuss adjacent literatures that demonstrate the importance of experience-dependent learning for adolescent development: environmental contextual influences and training paradigms that aim to improve regulation skills. We first highlight changes in prominent limbic and cortical regions-like the amygdala and medial prefrontal cortex-as well as structural and functional connectivity between these areas that are associated with adolescents' regulation skills. Next, we consider how puberty, the hallmark developmental milestone in adolescence, helps instantiate these biobehavioral adaptations. We then survey the existing literature demonstrating the ways in which cultural, socioeconomic, and interpersonal contexts drive behavioral and neural adaptation for self-regulation. Finally, we highlight promising results from regulation training paradigms that suggest training may be especially efficacious for adolescent samples. In our conclusion, we highlight some exciting frontiers in human self-regulation research as well as recommendations for improving the methodological implementation of developmental neuroimaging studies and training paradigms.

2.
PLoS Biol ; 20(12): e3001938, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542658

RESUMO

Sustained attention (SA) and working memory (WM) are critical processes, but the brain networks supporting these abilities in development are unknown. We characterized the functional brain architecture of SA and WM in 9- to 11-year-old children and adults. First, we found that adult network predictors of SA generalized to predict individual differences and fluctuations in SA in youth. A WM model predicted WM performance both across and within children-and captured individual differences in later recognition memory-but underperformed in youth relative to adults. We next characterized functional connections differentially related to SA and WM in youth compared to adults. Results revealed 2 network configurations: a dominant architecture predicting performance in both age groups and a secondary architecture, more prominent for WM than SA, predicting performance in each age group differently. Thus, functional connectivity (FC) predicts SA and WM in youth, with networks predicting WM performance differing more between youths and adults than those predicting SA.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Criança , Adulto , Adolescente , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Atenção , Mapeamento Encefálico/métodos
3.
Dev Psychobiol ; 64(4): e22258, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35452534

RESUMO

Individual differences in children's cognitive abilities impact life and health outcomes. What factors influence these individual differences during development? Here, we test whether children's environments predict cognitive performance, independent of well-characterized socioeconomic effects. We analyzed data from 9002 9- to 10-year olds from the Adolescent Brain Cognitive Development Study, an ongoing longitudinal study with community samples across the United States. Using youth- and caregiver-report questionnaires and national database registries (e.g., neighborhood crime, walkability), we defined principal components summarizing children's home, school, neighborhood, and cultural environments. In two independent samples (ns = 3475, 5527), environmental components explained unique variance in children's general cognitive ability, executive functioning, and learning/memory abilities. Furthermore, increased neighborhood enrichment was associated with an attenuated relationship between sociodemographics and general cognitive abilities. Thus, the environment accounts for unique variance in cognitive performance in children and should be considered alongside sociodemographic factors to better understand brain functioning and behavior across development.


Assuntos
Características de Residência , Meio Social , Adolescente , Criança , Cognição , Humanos , Estudos Longitudinais , Instituições Acadêmicas , Estados Unidos
4.
J Vis ; 21(4): 5, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830169

RESUMO

To assess the relative integrity of early visual and auditory processes in autism spectrum disorder (ASD), we used frequency-tagged visual and auditory stimulation and high-density electroencephalogram recordings of unimodal and dual-modality responses in a case-control design. To test for the specificity of effects on ASD, we recorded from a smaller group of children with attention-deficit hyperactivity disorder (ADHD). Horizontal 3 cycle per degree (cpd) gratings were presented at 5 Hz, and a random stream of /ba/, /da/, /ga/ syllables was presented at 6 Hz. Grating contrast response functions were measured unimodally and in the presence of a 64-dB auditory input. Auditory response functions were measured unimodally and in the presence of a 40% contrast grating. Children with ASD (n = 34) and ADHD (n = 13) showed a common lack of audio-visual interaction compared to typically developing children (n = 40) when measured at the first harmonic of the visual stimulus frequency. Both patient groups also showed depressed first harmonic responses at low contrast, but the ADHD group had consistently higher first-harmonic responses at high contrast. Children with ASD had a preferential loss of second-harmonic (transient) responses. The alteredtransient responses in ASD are likely to arise very early in the visual pathway and could thus have downstream consequences for many other visual mechanisms and processes. The alteration in audio-visual interaction could be a signature of a comorbid phenotype shared by ASD and ADHD, possibly due to alterations in attentional selection systems.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Atenção , Estudos de Casos e Controles , Criança , Eletroencefalografia , Humanos
5.
J Neurosci ; 40(26): 5090-5104, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32451322

RESUMO

Working memory function changes across development and varies across individuals. The patterns of behavior and brain function that track individual differences in working memory during human development, however, are not well understood. Here, we establish associations between working memory, other cognitive abilities, and functional MRI (fMRI) activation in data from over 11,500 9- to 10-year-old children (both sexes) enrolled in the Adolescent Brain Cognitive Development (ABCD) Study, an ongoing longitudinal study in the United States. Behavioral analyses reveal robust relationships between working memory, short-term memory, language skills, and fluid intelligence. Analyses relating out-of-scanner working memory performance to memory-related fMRI activation in an emotional n-back task demonstrate that frontoparietal activity during a working memory challenge indexes working memory performance. This relationship is domain specific, such that fMRI activation related to emotion processing during the emotional n-back task, inhibitory control during a stop-signal task (SST), and reward processing during a monetary incentive delay (MID) task does not track memory abilities. Together, these results inform our understanding of individual differences in working memory in childhood and lay the groundwork for characterizing the ways in which they change across adolescence.SIGNIFICANCE STATEMENT Working memory is a foundational cognitive ability that changes over time and varies across individuals. Here, we analyze data from over 11,500 9- to 10-year-olds to establish relationships between working memory, other cognitive abilities, and frontoparietal brain activity during a working memory challenge, but not during other cognitive challenges. Our results lay the groundwork for assessing longitudinal changes in working memory and predicting later academic and other real-world outcomes.


Assuntos
Encéfalo/fisiologia , Desenvolvimento Infantil/fisiologia , Memória de Curto Prazo/fisiologia , Encéfalo/crescimento & desenvolvimento , Criança , Feminino , Humanos , Individualidade , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino
6.
Nat Commun ; 9(1): 3511, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158523

RESUMO

Binocular differencing of spatial cues required for perceiving depth relationships is associated with decreased sensitivity to the corresponding retinal image displacements. However, binocular summation of contrast signals increases sensitivity. Here, we investigated this divergence in sensitivity by making direct neural measurements of responses to suprathreshold motion in human adults and 5-month-old infants using steady-state visually evoked potentials. Interocular differences in retinal image motion generated suppressed response functions and correspondingly elevated perceptual thresholds compared to motion matched between the two eyes. This suppression was of equal strength for horizontal and vertical motion and therefore not specific to the perception of motion-in-depth. Suppression is strongly dependent on the presence of spatial references in the image and highly immature in infants. Suppression appears to be the manifestation of a succession of spatial and interocular opponency operations that occur at an intermediate processing stage either before or in parallel with the extraction of motion-in-depth.


Assuntos
Visão Binocular/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Percepção de Profundidade/fisiologia , Feminino , Humanos , Masculino , Percepção de Movimento/fisiologia , Adulto Jovem
7.
J Neurosci ; 37(23): 5608-5619, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473649

RESUMO

Stereopsis is the primary cue underlying our ability to make fine depth judgments. In adults, depth discriminations are supported largely by relative rather than absolute binocular disparity, and depth is perceived primarily for horizontal rather than vertical disparities. Although human infants begin to exhibit disparity-specific responses between 3 and 5 months of age, it is not known how relative disparity mechanisms develop. Here we show that the specialization for relative disparity is highly immature in 4- to 6-month-old infants but is adult-like in 4- to 7-year-old children. Disparity-tuning functions for horizontal and vertical disparities were measured using the visual evoked potential. Infant relative disparity thresholds, unlike those of adults, were equal for vertical and horizontal disparities. Their horizontal disparity thresholds were a factor of ∼10 higher than adults, but their vertical disparity thresholds differed by a factor of only ∼4. Horizontal relative disparity thresholds for 4- to 7-year-old children were comparable with those of adults at ∼0.5 arcmin. To test whether infant immaturity was due to spatial limitations or insensitivity to interocular correlation, highly suprathreshold horizontal and vertical disparities were presented in alternate regions of the display, and the interocular correlation of the interdigitated regions was varied from 0% to 100%. This manipulation regulated the availability of coarse-scale relative disparity cues. Adult and infant responses both increased with increasing interocular correlation by similar magnitudes, but adult responses increased much more for horizontal disparities, further evidence for qualitatively immature stereopsis based on relative disparity at 4-6 months of age.SIGNIFICANCE STATEMENT Stereopsis, our ability to sense depth from horizontal image disparity, is among the finest spatial discriminations made by the primate visual system. Fine stereoscopic depth discriminations depend critically on comparisons of disparity relationships in the image that are supported by relative disparity cues rather than the estimation of single, absolute disparities. Very young human and macaque infants are sensitive to absolute disparity, but no previous study has specifically studied the development of relative disparity sensitivity, a hallmark feature of adult stereopsis. Here, using high-density EEG recordings, we show that 4- to 6-month-old infants display both quantitative and qualitative response immaturities for relative disparity information. Relative disparity responses are adult-like no later than 4-7 years of age.


Assuntos
Envelhecimento/fisiologia , Percepção de Profundidade/fisiologia , Rede Nervosa/fisiologia , Disparidade Visual/fisiologia , Córtex Visual/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA