RESUMO
Bats are among the least well-known mammals, particularly in terms of their behavior and activity patterns during the winter. Here, we use passive acoustic monitoring to overcome some of the challenges inherent in surveying cryptic forest bats during the wet season to quantify overwintering behavior for 11 species in California coast redwood forests under varying microclimates. Because different species are active at different forest heights, we also examined the effect of acoustic detector placement (treetop or ground level). Generalized linear mixed models were used to relate acoustic detection probability for 8 species to daytime and nighttime temperature, relative humidity, water vapor pressure, and detector placement. The results indicate that daytime maximum temperature best explained variation in nightly probability of detection, and temperature threshold at which bats were predicted to be detected varied considerably across species. By using more precise species detection methods, we were able to resolve significant differences in activity patterns between Myotis yumanensis and M. californicus, 2 species with similar acoustic signatures that are often lumped together. Myotis californicus was predicted to have a 50% probability of detection at maximum daytime temperature as low as 12.5 °C, whereas M. yumanensis was not predicted to have 50% detection probability until maximum daytime temperature was at least 22 °C, suggesting that M. californicus spends less time in torpor. Also, monitoring at the top of the canopy revealed 4 migratory species to be present in the ecosystem on significantly more monitoring nights than could be observed using conventional ground-based monitoring methods. Improving winter bat survey methods provides evidence that diverse bat species are more active in redwood forests during the winter than previously documented. This finding suggests that coastal forests could provide important winter bat habitat for both resident and migratory species.
RESUMO
Climate refugia, areas where climate is expected to remain relatively stable, can offer a near-term safe haven for species sensitive to warming temperatures and drought. Understanding the influence of temperature, moisture, and disturbance on sensitive species is critical during this time of rapid climate change. Coastal habitats can serve as important refugia. Many of these areas consist of working forestlands, and there is a growing recognition that conservation efforts worldwide must consider the habitat value of working lands, in addition to protected areas, to effectively manage large landscapes that support biodiversity. The sensitivity of forest bats to climate and habitat disturbance makes them a useful indicator taxon. We tested how microclimate and forest management influence habitat use for 13 species of insectivorous bats in a large climate refugium in a global biodiversity hotspot. We examined whether bat activity during the summer dry season is greater in forests where coastal fog provides moisture and more stable temperatures across both protected mature stands and those regularly logged. Acoustic monitoring was conducted at a landscape scale with 20 study sites, and generalized linear mixed models were used to examine the influence of habitat variables. Six species were positively associated with warmer nighttime temperature, and 5 species had a negative relationship with humidity or a positive relationship with climatic moisture deficit. Our results suggest that these mammals may have greater climate adaptive capacity than expected, and, for now, that habitat use may be more related to optimal foraging conditions than to avoidance of warming temperatures and drought. We also determined that 12 of the 13 regionally present bat species were regularly detected in commercial timberland stands. Because forest bats are highly mobile, forage over long distances, and frequently change roosts, the stewardship of working forests must be addressed to protect these species.
Influencia del microclima y el manejo forestal sobre especies de murciélagos ante el cambio global Resumen Los refugios climáticos, áreas en donde se espera que el clima permanezca relativamente estable, pueden ofrecer un santuario a corto plazo para las especies sensibles al aumento de temperaturas y la sequía. Es muy importante entender la influencia de la temperatura, la humedad y las perturbaciones sobre las especies sensibles durante estos tiempos de cambio climático repentino. Los hábitats costeros pueden funcionar como refugios importantes. Muchas de estas áreas consisten en bosques funcionales y cada vez hay más reconocimiento de que los esfuerzos mundiales de conservación deben considerar el valor del hábitat de los suelos funcionales, además de las áreas protegidas, para manejar de manera efectiva los extensos paisajes que mantienen a la biodiversidad. La sensibilidad de los murciélagos de los bosques ante las perturbaciones climáticas y de hábitat hace que sean un taxón indicador útil. Analizamos cómo los microclimas y el manejo forestal influyen sobre el uso de hábitat de 13 especies de murciélagos insectívoros en un refugio climático amplio dentro de un punto caliente de biodiversidad mundial. Examinamos si la actividad de los murciélagos durante la temporada seca de verano es mayor en los bosques en donde la niebla costera proporciona humedad y temperaturas más estables tanto en los árboles maduros como aquellos que son talados con regularidad. Realizamos el monitoreo acústico a escala de paisaje en 20 estudios de sitio y usamos modelos lineales mixtos generalizados para examinar la influencia de las variables del hábitat. Seis especies estuvieron asociadas positivamente con la temperatura nocturna más cálida y cinco especies tuvieron una relación negativa con la humedad o una relación positiva con el déficit climático de humedad. Nuestros resultados sugieren que estos mamíferos pueden tener una mayor capacidad de adaptación climática de lo que se pensaba y, por ahora, que el uso de hábitat puede estar más relacionado con las condiciones óptimas de forrajeo que con la evasión de las temperaturas elevadas y la sequía. También determinamos que 12 de las 13 especies con presencia regional fueron detectadas con regularidad en los puntos de tala comercial. Ya que los murciélagos del bosque tienden a moverse mucho, forrajear a lo largo de grandes distancias y con frecuencia cambiar de nido, debemos abordar la administración de los bosques funcionales para proteger a estas especies.
Assuntos
Quirópteros , Mudança Climática , Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Microclima , Animais , Quirópteros/fisiologia , Conservação dos Recursos Naturais/métodos , Biodiversidade , Refúgio de Vida SelvagemRESUMO
Vinecology, the integration of ecological and viticultural practices, focuses on the working landscapes of the Mediterranean-climate biomes to make wine-grape production compatible with species conservation. We examined how maintaining remnant native vegetation and surrounding natural areas in and around vineyards, two primary practices of vinecology, may influence bird community richness and composition across a vineyard landscape. We conducted bird surveys over spring and summer (October-January) at 120 sites across a wine-grape growing region in central Chile. The sites were equally divided across vineyards with and without remnant native vegetation, and sites had varying amounts of adjacent natural land cover. We used generalized linear mixed models to examine individual species responses to remnant vegetation in the vineyard at plot scale (within a 50-m radius) in the surrounding natural area (within a 500-1000 m radius). We used the Horn similarity index to explore overall community differences to quantify variations in endemic species, guild detection levels, and species richness between site types. At the plot scale, 9 out of 30 species were positively associated with the proportion of remnant vegetation and 3 species were negatively associated. Six were positively influenced by the proportion of native vegetation in the surrounding landscape and 3 species were negatively associated with proportion of native vegetation. Although overall total detections and richness were significantly greater in continuous mixed Mediterranean forest, 84.9% of these species were also detected in forest remnants within vineyards. Endemics, insectivores, granivores, and omnivores were all more abundant in vineyards with remnant native vegetation than in vineyards without remnant native vegetation. Our results show the value of maintaining and restoring natural vegetation remnants in vineyards as a tool for bird conservation that can be applied in working landscapes of the New World Mediterranean climate regions.
Campos Vitivinícolas Amigables con las Aves mediante Viñedos Diversificados Resumen La vinecología, la integración de prácticas ecológicas y vinícolas, se enfoca en los paisajes productivos de los biomas pertenecientes al clima mediterráneo para lograr que la producción de uvas sea compatible con la conservación de especies. Analizamos cómo la conservación de la vegetación nativa remanente y las áreas naturales vecinas dentro y alrededor de los viñedos, dos prácticas primordiales de la vinecología, pueden influir sobre la riqueza y composición comunitaria de aves en todo un paisaje vinícola. Realizamos censos de aves durante la primavera y el verano (octubre - enero) en 120 sitios a través de una región en la que se cultivan uvas en la zona central de Chile. Los sitios estuvieron divididos de manera igualitaria en viñedos con y sin vegetación nativa remanente. Los sitios también tuvieron cantidades variables de cobertura natural de suelo adyacente. Usamos modelos lineales mixtos generalizados para examinar las respuestas individuales por especie a la vegetación remanente en el viñedo a escala de parcela (dentro de un radio de 50m) en el área natural vecina (dentro de un radio de 500-1000m). Usamos el índice de similitud de Horn para explorar las diferencias comunitarias generales para cuantificar las variaciones en las especies endémicas, los niveles de detección de gremios y la riqueza de especies entre los tipos de sitio. A escala de parcela, nueve de cada 30 especies estuvieron asociadas positivamente con la proporción de vegetación remanente y tres especies estuvieron asociadas negativamente. Seis especies fueron influenciadas positivamente por la proporción de la vegetación nativa en el paisaje vecino y tres especies estuvieron asociadas negativamente con la proporción de vegetación nativa. Aunque el total general de detecciones y de la riqueza fueron significativamente mayores en el bosque mediterráneo mixto continuo, el 84.9% de estas especies también fue detectada en los bosques remanentes dentro de los viñedos. Las especies endémicas, insectívoras, granívoras y omnívoras fueron más abundantes en los viñedos con vegetación nativa remanente que en los viñedos sin ésta. Nuestros resultados muestran la importancia de la conservación y restauración de los remanentes de vegetación nativa en los viñedos como herramientas para la conservación de aves que pueden ser aplicadas en paisajes funcionales en las regiones con clima mediterráneo del Nuevo Mundo.
Assuntos
Conservação dos Recursos Naturais , Vinho , Animais , Biodiversidade , Aves , Chile , Ecossistema , FazendasRESUMO
Protected areas (PAs) are essential to biodiversity conservation, but their static boundaries may undermine their potential for protecting species under climate change. We assessed how the climatic conditions within global terrestrial PAs may change over time. By 2070, protection is expected to decline in cold and warm climates and increase in cool and hot climates over a wide range of precipitation. Most countries are expected to fail to protect >90% of their available climate at current levels. The evenness of climatic representation under protection-not the amount of area protected-positively influenced the retention of climatic conditions under protection. On average, protection retention would increase by ~118% if countries doubled their climatic representativeness under protection or by ~102% if countries collectively reduced emissions in accordance with global targets. Therefore, alongside adoption of mitigation policies, adaptation policies that improve the complementarity of climatic conditions within PAs will help countries safeguard biodiversity.
RESUMO
Climate change is leading to widespread elevational shifts thought to increase species extinction risk in mountains. We integrate digital elevation models with a metric of human pressure to examine changes in the amount of intact land area available for species undergoing elevational range shifts in all major mountain ranges globally (n = 1010). Nearly 60% of mountainous area is under intense human pressure, predominantly at low elevations and mountain bases. Consequently, upslope range shifts generally resulted in modeled species at lower elevations expanding into areas of lower human pressure and, due to complex topography, encountering more intact land area relative to their starting position. Such gains were often attenuated at high elevations as land-use constraints diminished and topographic constraints increased. Integrating patterns of topography and human pressure is essential for accurate species vulnerability assessments under climate change, as priorities for protecting, connecting, and restoring mountain landscapes may otherwise be misguided.
RESUMO
Although a plethora of habitat-connectivity plans exists, protecting and restoring connectivity through on-the-ground action has been slow. We identified challenges to and opportunities for connectivity conservation through a literature review of project implementation, a workshop with scientists and conservation practitioners, 3 case studies of connectivity projects, and interviews with conservation professionals. Connectivity challenges and solutions tended to be context specific, dependent on land-ownership patterns, socioeconomic factors, and the policy framework. Successful connectivity implementation tended to be associated with development and promotion of a common vision among diverse sets of stakeholders, including nontraditional conservation actors, such as water districts and recreation departments, and with communication with partners and the public. Other factors that lead to successful implementation included undertaking empirical studies to prioritize and validate corridors and the identification of related co-benefits of corridor projects. Engaging partners involved in land management and planning, such as nongovernmental conservation organizations, public agencies, and private landowners, is critical to effective strategy implementation. A clear regulatory framework, including unambiguous connectivity conservation mandates, would increase public resource allocation, and incentive programs are needed to promote private sector engagement. Connectivity conservation must move more rapidly from planning to implementation. We provide an evidence-based solution composed of key elements for successful on-the-ground connectivity implementation. We identified the social processes necessary to advance habitat connectivity for biodiversity conservation and resilient landscapes under climate change.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Mudança ClimáticaRESUMO
Protected areas (PAs) that span elevational gradients enhance protection for taxonomic and phylogenetic diversity and facilitate species range shifts under climate change. We quantified the global protection of elevational gradients by analyzing the elevational distributions of 44,155 PAs in 1,010 mountain ranges using the highest resolution digital elevation models available. We show that, on average, mountain ranges in Africa and Asia have the lowest elevational protection, ranges in Europe and South America have intermediate elevational protection, and ranges in North America and Oceania have the highest elevational protection. We use the Convention on Biological Diversity's Aichi Target 11 to assess the proportion of elevational gradients meeting the 17% suggested minimum target and examine how different protection categories contribute to elevational protection. When considering only strict PAs [International Union for Conservation of Nature (IUCN) categories I-IV, n = 24,706], nearly 40% of ranges do not contain any PAs, roughly half fail to meet the 17% target at any elevation, and â¼75% fail to meet the target throughout ≥50% of the elevational gradient. Observed elevational protection is well below optimal, and frequently below a null model of elevational protection. Including less stringent PAs (IUCN categories V-VI and nondesignated PAs, n = 19,449) significantly enhances elevational protection for most continents, but several highly biodiverse ranges require new or expanded PAs to increase elevational protection. Ensuring conservation outcomes for PAs with lower IUCN designations as well as strategically placing PAs to better represent and connect elevational gradients will enhance ecological representation and facilitate species range shifts under climate change.
RESUMO
Outdoor recreation is typically assumed to be compatible with biodiversity conservation and is permitted in most protected areas worldwide. However, increasing numbers of studies are discovering negative effects of recreation on animals. We conducted a systematic review of the scientific literature and analyzed 274 articles on the effects of non-consumptive recreation on animals, across all geographic areas, taxonomic groups, and recreation activities. We quantified trends in publication rates and outlets, identified knowledge gaps, and assessed evidence for effects of recreation. Although publication rates are low and knowledge gaps remain, the evidence was clear with over 93% of reviewed articles documenting at least one effect of recreation on animals, the majority of which (59%) were classified as negative effects. Most articles focused on mammals (42% of articles) or birds (37%), locations in North America (37.7%) or Europe (26.6%), and individual-level responses (49%). Meanwhile, studies of amphibians, reptiles, and fish, locations in South America, Asia, and Africa, and responses at the population and community levels are lacking. Although responses are likely to be species-specific in many cases, some taxonomic groups (e.g., raptors, shorebirds, ungulates, and corals) had greater evidence for an effect of recreation. Counter to public perception, non-motorized activities had more evidence for a negative effect of recreation than motorized activities, with effects observed 1.2 times more frequently. Snow-based activities had more evidence for an effect than other types of recreation, with effects observed 1.3 times more frequently. Protecting biodiversity from potentially harmful effects of recreation is a primary concern for conservation planners and land managers who face increases in park visitation rates; accordingly, there is demand for science-based information to help solve these dilemmas.
Assuntos
Biodiversidade , Recreação , AnimaisRESUMO
Amateur naturalists have played an important role in the study and conservation of nature since the 17th century. Today, naturalist groups make important contributions to bridge the gap between conservation science and practice around the world. We examined data from 2 regional naturalist programs to understand participant motivations, barriers, and perspectives as well as the actions they take to advance science, stewardship, and community engagement. These programs provide certification-based natural history and conservation science training for adults that is followed by volunteer service in citizen science, education, and stewardship. Studies in California and Virginia include quantitative and qualitative evaluation data collected through pre- and postcourse surveys, interviews, and long-term tracking of volunteer hours. Motivations of participants focused on learning about the local environment and plants and animals, connecting with nature, becoming certified, and spending time with people who have similar interests. Over half the participants surveyed were over 50 years old, two-thirds were women, and a majority reported household incomes of over $50,000 (60% in California, 85% in Virginia), and <20% of those surveyed in both states described themselves as nonwhite. Thus, these programs need to improve participation by a wider spectrum of the public. We interviewed younger and underrepresented adults to examine barriers to participation in citizen science. The primary barrier was lack of time due to the need to work and focus on career advancement. Survey data revealed that participants' ecological knowledge, scientific skills, and belief in their ability to address environmental issues increased after training. Documented conservation actions taken by the participants include invasive plant management, habitat restoration, and cleanups of natural areas and streams. Long-term data from Virginia on volunteer hours dedicated to environmental citizen science show an increase from 14% in 2007 to 32% in 2014. In general, participants in the naturalist programs we examined increased their content knowledge about ecosystems, had greater confidence in conserving them, and continued to engage as citizen scientists after completing the program.
Assuntos
Conservação dos Recursos Naturais , Ecologia , Opinião Pública , Animais , California , Humanos , História Natural , VirginiaRESUMO
Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations.
Assuntos
Comportamento Animal/fisiologia , Quirópteros , Ecossistema , Animais , Densidade Demográfica , Estações do AnoRESUMO
In developed countries dogs (Canis lupus familiaris) are permitted to accompany human visitors to many protected areas (e.g., >96% of protected lands in California, U.S.A.), and protected-area management often focuses on regulating dogs due to concerns about predation, competition, or transmission of disease and conflicts with human visitors. In 2004 and 2005, we investigated whether carnivore species richness and abundance were associated with management of domestic dogs and recreational visitation in protected areas in northern California. We surveyed for mammalian carnivores and human visitors in 21 recreation areas in which dogs were allowed offleash or onleash or were excluded, and we compared our observations in the recreation areas with observations in seven reference sites that were not open to the public. Carnivore abundance and species richness did not differ among the three types of recreation areas, but native carnivore species richness was 1.7 times greater (p < 0.01) and the relative abundances of native coyotes (Canis latrans) and bobcats (Lynx rufus) were over four times greater (p < 0.01) in the reference sites. Abundances of bobcats and all carnivores declined as the number of visitors increased. The policy on domestic dogs did not appear to affect species richness and abundance of mammalian carnivores. But the number of dogs we observed was strongly associated with human visitation (R(2) = 0.54), so the key factors associated with recreational effects on carnivores appear to be the presence and number of human visitors to protected areas.
Assuntos
Carnívoros/fisiologia , Conservação dos Recursos Naturais , Recreação , Animais , Biodiversidade , California , Coiotes/fisiologia , Cães , Política Ambiental , Humanos , Densidade Demográfica , Dinâmica PopulacionalRESUMO
Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Atividades Humanas/tendências , Salmão/fisiologia , Migração Animal , Animais , Monitoramento Ambiental , Previsões , Fatores de Tempo , Poluição da Água/prevenção & controleRESUMO
Conservation easements are one of the primary tools for conserving biodiversity on private land. Despite their increasing use, little quantitative data are available on what species and habitats conservation easements aim to protect, how much structural development they allow, or what types of land use they commonly permit. To address these knowledge gaps, we surveyed staff responsible for 119 conservation easements established by the largest nonprofit easement holder, The Nature Conservancy, between 1985 and 2004. Most easements (80%) aimed to provide core habitat to protect species or communities on-site, and nearly all were designed to reduce development. Conservation easements also allowed for a wide range of private uses, which may result in additional fragmentation and habitat disturbance. Some residential or commercial use, new structures, or subdivision of the property were permitted on 85% of sampled conservation easements. Over half (56%) allowed some additional buildings, of which 60% restricted structure size or building area. Working landscape easements with ranching, forestry, or farming made up nearly half (46%) of the easement properties sampled and were more likely than easements without these uses to be designated as buffers to enhance biodiversity in the surrounding area. Our results demonstrate the need for clear restrictions on building and subdivision in easements, research on the compatibility of private uses on easement land, and greater public understanding of the trade-offs implicit in the use of conservation easements for biodiversity conservation.
Assuntos
Conservação dos Recursos Naturais , Animais , Biodiversidade , Coleta de Dados , Ecossistema , Plantas , Estados UnidosRESUMO
Historical and recent remote sensing data can be used to address temporal and spatial relationships between upland land cover and downstream vegetation response at the watershed scale. This is demonstrated for sub-watersheds draining into Elkhorn Slough, California, where salt marsh habitat has diminished because of the formation of sediment fans that support woody riparian vegetation. Multiple regression models were used to examine which land cover variables and physical properties of the watershed most influenced sediment fan size within 23 sub-watersheds (1.4 ha to 200 ha). Model explanatory power increased (adjusted R(2) = 0.94 vs. 0.75) among large sub-watersheds (>10 ha) and historical watershed variables, such as average farmland slope, flowpath slope, and flowpath distance between farmland and marsh, were significant. It was also possible to explain the increase in riparian vegetation by historical watershed variables for the larger sub-watersheds. Sub-watershed area is the overriding physical characteristic influencing the extent of sedimentation in a salt marsh, while percent cover of agricultural land use is the most influential land cover variable. The results also reveal that salt marsh recovery depends on relative cover of different land use classes in the watershed, with greater chances of recovery associated with less intensive agriculture. This research reveals a potential delay between watershed impacts and wetland response that can be best revealed when conducting multi-temporal analyses on larger watersheds.