Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Neurophysiol ; 131(6): 1143-1155, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38658179

RESUMO

Although perceptual thresholds have been widely studied, vestibuloocular reflex (VOR) thresholds have received less attention, so the relationship between VOR and perceptual thresholds remains unclear. We compared the frequency dependence of human VOR thresholds to human perceptual thresholds for yaw head rotation in both upright ("yaw rotation") and supine ("yaw tilt") positions, using the same human subjects and motion device. VOR thresholds were generally a little smaller than perceptual thresholds. We also found that horizontal VOR thresholds for both yaw rotation about an Earth-vertical axis and yaw tilt (yaw rotation about an Earth-horizontal axis) were relatively constant across four frequencies (0.2, 0.5, 1, and 2 Hz), with little difference between yaw rotation and yaw tilt VOR thresholds. For yaw tilt stimuli, perceptual thresholds were slightly lower at the lowest frequency and nearly constant at all other (higher) frequencies. However, for yaw rotation, perceptual thresholds increased significantly at the lowest frequency (0.2 Hz). We conclude 1) that VOR thresholds were relatively constant across frequency for both yaw rotation and yaw tilt, 2) that the known contributions of velocity storage to the VOR likely yielded these VOR thresholds that were similar for yaw rotation and yaw tilt for all frequencies tested, and 3) that the integration of otolith and horizontal canal signals during yaw tilt when supine contributes to stable perceptual thresholds, especially relative to the low-frequency perceptual thresholds recorded during yaw rotation.NEW & NOTEWORTHY We describe for the first time that human VOR thresholds differ from human forced-choice perceptual thresholds, with the difference especially evident at frequencies below 0.5 Hz. We also report that VOR thresholds are relatively constant across frequency for both yaw rotation and yaw tilt. These findings are consistent with the idea that high-pass filtering in cortical pathways impacts cognitive decision-making.


Assuntos
Reflexo Vestíbulo-Ocular , Limiar Sensorial , Humanos , Reflexo Vestíbulo-Ocular/fisiologia , Masculino , Feminino , Adulto , Rotação , Limiar Sensorial/fisiologia , Movimentos da Cabeça/fisiologia , Adulto Jovem
2.
Atten Percept Psychophys ; 86(4): 1417-1434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658516

RESUMO

Vestibular perceptual thresholds quantify sensory noise associated with reliable perception of small self-motions. Previous studies have identified substantial variation between even healthy individuals' thresholds. However, it remains unclear if or how an individual's vestibular threshold varies over repeated measures across various time scales (repeated measurements on the same day, across days, weeks, or months). Here, we assessed yaw rotation and roll tilt thresholds in four individuals and compared this intra-individual variability to inter-individual variability of thresholds measured across a large age-matched cohort each measured only once. For analysis, we performed simulations of threshold measurements where there was no underlying variability (or it was manipulated) to compare to that observed empirically. We found remarkable consistency in vestibular thresholds within individuals, for both yaw rotation and roll tilt; this contrasts with substantial inter-individual differences. Thus, we conclude that vestibular perceptual thresholds are an innate characteristic, which validates pooling measures across sessions and potentially serves as a stable clinical diagnostic and/or biomarker.


Assuntos
Limiar Sensorial , Vestíbulo do Labirinto , Humanos , Limiar Sensorial/fisiologia , Masculino , Feminino , Adulto , Vestíbulo do Labirinto/fisiologia , Percepção de Movimento/fisiologia , Rotação , Individualidade , Adulto Jovem , Pessoa de Meia-Idade
3.
Exp Brain Res ; 242(2): 385-402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135820

RESUMO

Vestibular contributions to linear motion (i.e., translation) perception mediated by the otoliths have yet to be fully characterized. To quantify the maximal extent that non-vestibular cues can contribute to translation perception, we assessed vestibular perceptual thresholds in two patients with complete bilateral vestibular ablation to compare to our data in 12 young (< 40 years), healthy controls. Vestibular thresholds were assessed for naso-occipital ("x-translation"), inter-aural ("y-translation"), and superior-inferior ("z-translation") translations in three body orientations (upright, supine, side-lying). Overall, in our patients with bilateral complete vestibular loss, thresholds were elevated ~ 2-45 times relative to healthy controls. No systematic differences in vestibular perceptual thresholds were noted between motions that differed only with respect to their orientation relative to the head (i.e., otoliths) in patients with bilateral vestibular loss. In addition, bilateral loss patients tended to show a larger impairment in the perception of earth-vertical translations (i.e., motion parallel to gravity) relative to earth-horizontal translations, which suggests increased contribution of the vestibular system for earth-vertical motions. However, differences were also noted between the two patients. Finally, with the exception of side-lying x-translations, no consistent effects of body orientation in our bilateral loss patients were seen independent from those resulting from changes in the plane of translation relative to gravity. Overall, our data confirm predominant vestibular contributions to whole-body direction-recognition translation tasks and provide fundamental insights into vestibular contributions to translation motion perception.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Humanos , Movimento (Física) , Gravitação
4.
Otol Neurotol ; 45(1): 75-82, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38013457

RESUMO

OBJECTIVE: To assess vestibular (i.e., passive self-motion) perception in patients diagnosed with persistent postural-perceptual dizziness (PPPD). STUDY DESIGN: Case-controlled, cross-sectional, observational investigation. SETTING: Single-center laboratory-based study. PATIENTS: Thirteen patients with PPPD, 13 age-matched healthy control volunteers. Of those with PPPD, eight had co-occurring vestibular migraine (VM). INTERVENTIONS: All participants completed a vestibular threshold test battery reflecting perception with predominant inputs from ( a ) the otoliths (1-Hz interaural y -axis translation, 1-Hz superior-inferior z -axis translation), ( b ) the semicircular canals (2-Hz yaw rotation, 2-Hz tilts in the planes of the vertical canal pairs), and ( c ) and canal-otolith integration (0.5-Hz roll tilt). MAIN OUTCOME MEASURES: Direction-recognition thresholds for each vestibular threshold test condition. RESULTS: Across all patients with PPPD, higher thresholds for superior-inferior z -translations thresholds in comparison to age-matched healthy control participants were identified ( p < 0.001). Those patients with co-occurring VM and PPPD (PPPD/+VM) displayed significantly higher z -translation thresholds ( p = 0.006), whereas patients with PPPD without VM (PPPD/-VM) displayed significantly higher roll tilt thresholds ( p = 0.029). CONCLUSIONS: Patients with PPPD did not display a global worsening of passive self-motion perception as quantified by vestibular perceptual thresholds. Instead, patients with PPPD displayed elevated thresholds for only roll tilt and z -translation thresholds, with the relative change in each threshold impacted by the co-occurrence of VM. Because both z -translation and roll tilt motions are reliant on accurate gravity perception, our data suggest that patients with PPPD may exhibit impaired processing of graviceptive cues.


Assuntos
Transtornos de Enxaqueca , Percepção de Movimento , Doenças Vestibulares , Humanos , Estudos Transversais , Tontura/complicações , Transtornos de Enxaqueca/complicações , Vertigem/etiologia , Doenças Vestibulares/complicações
5.
Multisens Res ; 36(8): 865-890, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37907070

RESUMO

One's ability to maintain their center of mass within their base of support (i.e., balance) is believed to be the result of multisensory integration. Much of the research in this literature has focused on integration of visual, vestibular, and proprioceptive cues. However, several recent studies have found evidence that auditory cues can impact balance control metrics. In the present study, we sought to better characterize the impact of auditory cues on narrow stance balance task performance with different combinations of visual stimuli (virtual and real world) and support surfaces (firm and compliant). In line with past results, we found that reducing the reliability of proprioceptive cues and visual cues yielded consistent increases in center-of-pressure (CoP) sway metrics, indicating more imbalance. Masking ambient auditory cues with broadband noise led to less consistent findings; however, when effects were observed they were substantially smaller for auditory cues than for proprioceptive and visual cues - and in the opposite direction (i.e., masking ambient auditory cues with broadband noise reduced sway in some situations). Additionally, trials that used virtual and real-world visual stimuli did not differ unless participants were standing on a surface that disrupted proprioceptive cues; disruption of proprioception led to increased CoP sway metrics in the virtual visual condition. This is the first manuscript to report the effect size of different perturbations in this context, and the first to study the impact of acoustically complex environments on balance in comparison to visual and proprioceptive contributions. Future research is needed to better characterize the impact of different acoustic environments on balance.


Assuntos
Sinais (Psicologia) , Vestíbulo do Labirinto , Humanos , Equilíbrio Postural , Reprodutibilidade dos Testes , Propriocepção
6.
Front Aging Neurosci ; 15: 1207711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637958

RESUMO

Background: Balance assessments that intentionally alter the reliability of visual and proprioceptive feedback (e.g., standing on foam with eyes closed) have become a standard approach for identifying vestibular mediated balance dysfunction in older adults. However, such assessments cannot discern which specific element of the vestibular system (e.g., semicircular canal, otolith, or combined canal-otolith) underlies the observed age-related changes in balance performance. The present study was designed to determine the associations between specific sources of vestibular noise and quantitative measures of quiet stance postural control measured during standard "vestibular" balance conditions. Methods: A group of 52 asymptomatic adults (53.21 ± 19.7, 21 to 84 years) without a history of vestibular or neurologic disorders volunteered for this study. We measured a battery of five vestibular perceptual thresholds that assay vestibular noise with predominant contributions from the vertical canals, lateral canals, utricles, saccules, and the centrally integrated canal-otolith signal. In addition, participants completed two standard balance assessments that were each designed to prioritize the use of vestibular cues for quiet stance postural control-eyes closed on foam (Condition 4 of the Modified Romberg Balance Test) and eyes closed, on a sway referenced support surface (Condition 5 of the Sensory Organization Test). Results: In age adjusted models, we found strong positive associations between roll tilt vestibular thresholds, a measure of noise in the centrally integrated canal-otolith signal, and the root mean square distance (RMSD) of the anteroposterior and mediolateral center of pressure (CoP) captured during eyes closed stance on a sway referenced support surface. The strength of the association between roll tilt thresholds and the RMSD of the CoP was between 3-times and 30-times larger than the association between postural sway and each of the other vestibular thresholds measured. Conclusion: We posit that noise in the centrally estimated canal-otolith "tilt" signal may be the primary driver of the subclinical postural instability experienced by older adults during the "vestibular" conditions of balance assessments. Additional testing in adults with clinical balance impairment are needed to identify if roll tilt thresholds may also serve as a surrogate metric by which to detect vestibular mediated balance dysfunction and/or fall risk.

7.
Otol Neurotol ; 44(9): 949-955, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590890

RESUMO

HYPOTHESIS: We hypothesized that the addition of visual feedback during roll tilt perceptual training would yield a significant reduction in vestibular perceptual thresholds relative to a control group. BACKGROUND: We previously showed that roll tilt vestibular thresholds could be improved through a perceptual training protocol that used a simple auditory cue. Variability in training outcomes within the treatment group suggested that an auditory cue alone may be suboptimal for improving self-motion perception. METHODS: In 10 healthy adults, roll tilt vestibular thresholds, quantifying the smallest motion that can be reliably perceived, were measured before ("pretraining") and after ("posttraining") a training protocol designed to improve roll tilt perception. The protocol included 1,300 trials of 0.5 Hz whole-body roll tilt over 5 days, with participants being given both an auditory cue ("correct' vs. "incorrect') and visual feedback (viewing a stationary visual scene) after indicating their perceived direction of tilt. A control group (N = 10) underwent only the "pretraining" and "posttraining" assessments. RESULTS: The training group showed an average decrease in roll tilt vestibular thresholds of 1.7% ± 56%, with training outcomes varying widely. Three individuals showed an average increase in roll tilt thresholds of 69.7%, whereas the remaining seven adults showed an average decrease in thresholds of 32.3%. CONCLUSION: These data show that visual feedback during roll tilt perceptual training leads to heterogenous outcomes, but in a subset of individuals, it may lead to improvements in perceptual precision. Additional work is needed to define the optimal training parameters, including feedback schema, before investigating potential clinical applications.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Adulto , Humanos , Retroalimentação Sensorial , Modalidades de Fisioterapia
8.
Front Rehabil Sci ; 4: 1142018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576917

RESUMO

Background: Persistent postural perceptual dizziness (PPPD) is a common cause of chronic dizziness and imbalance. Emerging evidence suggests that changes in quantitative measures of postural control may help identify individuals with PPPD, however, traditional linear metrics of sway have yielded inconsistent results. Methodologies to examine the temporal structure of sway, including recurrent quantification analysis (RQA), have identified unique changes in dynamic structure of postural control in other patient populations. This study aimed to determine if adults with PPPD exhibit changes in the dynamic structure of sway and whether this change is modulated on the basis of available sensory cues. Methods: Twelve adults diagnosed with PPPD and twelve age-matched controls, completed a standard battery of quiet stance balance tasks that involved the manipulation of visual and/or proprioceptive feedback. For each group, the regularity and complexity of the CoP signal was assessed using RQA and the magnitude and variability of the CoP signal was quantified using traditional linear measures. Results: An overall effect of participant group (i.e., healthy controls vs. PPPD) was seen for non-linear measures of temporal complexity quantified using RQA. Changes in determinism (i.e., regularity) were also modulated on the basis of availability of sensory cues in patients with PPPD. No between-group difference was identified for linear measures assessing amount and variability of sway. Conclusions: Participants with PPPD on average exhibited sway that was similar in magnitude to, but significantly more repeatable and less complex than, healthy controls. These data show that non-linear measures provide unique information regarding the effect of PPPD on postural control, and as a result, may serve as potential rehabilitation outcome measures.

9.
Front Rehabil Sci ; 4: 1166859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284337

RESUMO

Background: The Sensory Organization Test (SOT) was designed to measure changes in postural control in response to unreliable visual and/or proprioceptive feedback. However, secondary to the manipulation of sensory cues in only the sagittal plane, the SOT is capable of only describing postural control in a single direction. The present study aimed to characterize postural responses to a modified SOT designed to concurrently challenge both anteroposterior and mediolateral postural control. Methods: Twenty-one healthy adult volunteers (30.6 ± 10.2 years) completed the standard anteroposterior one-dimensional (1D) SOT, in addition to a modified SOT with the support surface sway-referenced to both anteroposterior and mediolateral postural sway (two-dimensional, 2D). Our primary analysis concerned a comparison of mediolateral, as well as anteroposterior postural sway measured during the standard one-dimensional (i.e., pitch tilt) and the novel two-dimensional (i.e., roll and pitch tilt) sway-referenced paradigms. Here, postural sway was quantified by calculating the root mean square distance (RMSD) of the center of pressure (CoP) during each trial. Results: Our data showed that the 2D sway-referenced conditions yielded a selective increase in mediolateral postural sway relative to the standard 1D conditions for both wide (η2 = 0.66) and narrow (η2 = 0.78) stance conditions, with anteroposterior postural sway being largely unaffected (η2 = 0.001 to 0.103, respectively). The ratio between mediolateral postural sway in the sway-referenced conditions and postural sway in the corresponding stable support surface conditions was greater for the 2D (2.99 to 6.26 times greater) compared to 1D paradigms (1.25 to 1.84 times greater), consistent with a superior degradation of viable proprioceptive feedback in the 2D paradigm. Conclusion: A modified 2D version of the SOT was shown to provide a greater challenge to mediolateral postural control relative to the standard 1D SOT protocol, putatively as a result of a superior capacity to degrade proprioceptive feedback in the mediolateral direction. Given these positive findings, future studies should investigate the clinical utility of this modified SOT as a means by which to better characterize sensory contributions to postural control in the presence of various sensorimotor pathologies, including vestibular hypofunction.

10.
Exp Brain Res ; 241(7): 1873-1885, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37310477

RESUMO

Vestibular perceptual thresholds provide insights into sensory function and have shown clinical and functional relevance. However, specific sensory contributions to tilt and rotation thresholds have been incompletely characterized. To address this limitation, tilt thresholds (i.e., rotations about earth-horizontal axes) were quantified to assess canal-otolith integration, and rotation thresholds (i.e., rotations about earth-vertical axes) were quantified to assess perception mediated predominantly by the canals. To determine the maximal extent to which non-vestibular sensory cues (e.g., tactile) can contribute to tilt and rotation thresholds, we tested two patients with completely absent vestibular function and compared their data to those obtained from two separate cohorts of young (≤ 40 years), healthy adults. As one primary finding, thresholds for all motions were elevated by approximately 2-35 times in the absence of vestibular function, thus, confirming predominant vestibular contributions to both rotation and tilt self-motion perception. For patients without vestibular function, rotation thresholds showed larger increases relative to healthy adults than tilt thresholds. This suggests that increased extra-vestibular (e.g., tactile or interoceptive) sensory cues may contribute more to the perception of tilt than rotation. In addition, an impact of stimulus frequency was noted, suggesting increased vestibular contributions relative to other sensory systems can be targeted on the basis of stimulus frequency.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Humanos , Movimento (Física)
11.
Neurosci Biobehav Rev ; 143: 104943, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332781

RESUMO

Humans' sensory systems work synergistically to allow us to determine where our head and body are relative to the environment. To date, most research on this topic has focused on the visual and vestibular systems. There has been much less research on the contributions of interoceptive signals to spatial orientation, so the overall picture of how spatial orientation works is incomplete. This gap in the literature is especially problematic for aviation and spaceflight, where spatial disorientation is more likely to occur due to less common gravity conditions (i.e. microgravity and hypergravity) and can lead to fatal errors. In the present manuscript we review and summarize the current literature on this topic. Based upon the available evidence it would seem that interoceptive signals, particularly patterns of fluid/organ displacement, may play a role in sensing where our body is relative to the environment. More research utilizing experimentally induced perturbations to interoceptive receptors is needed before quantitative conclusions regarding the role of these interoceptive receptors can be drawn.


Assuntos
Voo Espacial , Vestíbulo do Labirinto , Ausência de Peso , Humanos , Orientação Espacial , Percepção Espacial
12.
J Vestib Res ; 32(6): 501-510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120751

RESUMO

BACKGROUND: Previous research suggested that the method of adjustment and forced choice variants of the subjective visual vertical (SVV) produce comparable estimates of both bias and variability. However, variants of the SVV that utilize a method of adjustment procedure are known to be heavily influenced by task parameters, including the stimulus rotation speed, which was not accounted for in previous SVV research comparing the method of adjustment to forced-choice. OBJECTIVE: The aim of the present study was to determine if (1) the SVV with a forced-choice procedure produces both bias and variability estimates that are comparable to those obtained using a method of adjustment procedure, (2) to see if rotation speed impacts the comparability of estimates and (3) quantify correlations between the estimates produced by different procedures. METHODS: Participants completed a variant of the SVV which utilized a forced-choice procedure as well as two variants of the SVV using a method of adjustment procedure with two different rotation speeds (6°/s and 12°/s). RESULTS: We found that the bias estimates were similar across all three conditions tested and that the variability estimates were greater in the SVV variants that utilized a method of adjustment procedure. This difference was more pronounced when the rotation speed was slower (6°/s). CONCLUSIONS: The results of this study suggest that forced-choice and method of adjustment methodologies yield similar bias estimates and different variability estimates. Given these results, we recommend utilizing forced-choice procedures unless (a) forced-choice is not feasible or (b) response variability is unimportant. We also recommend that clinicians consider the SVV methods when interpreting a patient's test results, especially for variability metrics.


Assuntos
Gravitação , Percepção Visual , Humanos , Rotação , Percepção Visual/fisiologia
13.
J Neurophysiol ; 128(3): 619-633, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894439

RESUMO

The present study aimed to determine if a vestibular perceptual learning intervention could improve roll tilt self-motion perception and balance performance. Two intervention groups (n = 10 each) performed 1,300 trials of roll tilt at either 0.5 Hz (2 s/motion) or 0.2 Hz (5 s/motion) distributed over 5 days; each intervention group was provided feedback (correct/incorrect) after each trial. Roll tilt perceptual thresholds, measured using 0.2-, 0.5-, and 1-Hz stimuli, as well as quiet stance postural sway, were measured on day 1 and day 6 of the study. The control group (n = 10) who performed no perceptual training, showed stable 0.2-Hz (+1.48%, P > 0.99), 0.5-Hz (-4.0%, P > 0.99), and 1-Hz (-17.48%, P = 0.20) roll tilt thresholds. The 0.2-Hz training group demonstrated significant improvements in both 0.2-Hz (-23.77%, P = 0.003) and 0.5-Hz (-22.2%, P = 0.03) thresholds. The 0.5-Hz training group showed a significant improvement in 0.2-Hz thresholds (-19.13%, P = 0.029), but not 0.5-Hz thresholds (-17.68%, P = 0.052). Neither training group improved significantly at the untrained 1-Hz frequency (P > 0.05). In addition to improvements in perceptual precision, the 0.5-Hz training group showed a decrease in sway when measured during "eyes open, on foam" (dz = 0.57, P = 0.032) and "eyes closed, on foam" (dz = 2.05, P < 0.001) quiet stance balance tasks. These initial data suggest that roll tilt perception can be improved with less than 5 h of training and that vestibular perceptual training may contribute to a reduction in subclinical postural instability.NEW & NOTEWORTHY Roll tilt vestibular perceptual thresholds, an assay of vestibular noise, were recently found to correlate with postural sway. We therefore hypothesized that roll tilt perceptual training would yield improvements in both perceptual precision and balance. Our data show that roll tilt perceptual thresholds and quiet stance postural sway can be significantly improved after less than 5 h of roll tilt perceptual training, supporting the hypothesis that vestibular noise contributes to increased postural sway.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Aprendizagem , Movimento (Física) , Equilíbrio Postural
14.
Multisens Res ; 35(3): 259-287, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065535

RESUMO

In an effort to characterize the factors influencing the perception of self-motion rotational cues, vestibular self-motion perceptual thresholds were measured in 14 subjects for rotations in the roll and pitch planes, as well as in the planes aligned with the anatomic orientation of the vertical semicircular canals (i.e., left anterior, right posterior; LARP, and right anterior, left posterior; RALP). To determine the multisensory influence of concurrent otolith cues, within each plane of motion, thresholds were measured at four discrete frequencies for rotations about earth-horizontal (i.e., tilts; EH) and earth-vertical axes (i.e., head positioned in the plane of the rotation; EV). We found that the perception of rotations, stimulating primarily the vertical canals, was consistent with the behavior of a high-pass filter for all planes of motion, with velocity thresholds increasing at lower frequencies of rotation. In contrast, tilt (i.e, EH rotation) velocity thresholds, stimulating both the canals and otoliths (i.e., multisensory integration), decreased at lower frequencies and were significantly lower than earth-vertical rotation thresholds at each frequency below 2 Hz. These data suggest that multisensory integration of otolithic gravity cues with semicircular canal rotation cues enhances perceptual precision for tilt motions at frequencies below 2 Hz. We also showed that rotation thresholds, at least partially, were dependent on the orientation of the rotation plane relative to the anatomical alignment of the vertical canals. Collectively these data provide the first comprehensive report of how frequency and axis of rotation influence perception of rotational self-motion cues stimulating the vertical canals.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Humanos , Movimento (Física) , Canais Semicirculares
15.
Front Integr Neurosci ; 15: 773008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970126

RESUMO

Roll tilt vestibular perceptual thresholds, an assay of vestibular noise, have recently been shown to be associated with suboptimal balance performance in healthy older adults. However, despite the strength of this correlation, the use of a categorical (i.e., pass/fail) balance assessment limits insight into the impacts of vestibular noise on postural sway. As a result, an explanation for this correlation has yet to be determined. We hypothesized that the correlation between roll tilt vestibular thresholds and postural control reflects a shared influence of sensory noise. To address this hypothesis, we measured roll tilt perceptual thresholds at multiple frequencies (0.2 Hz, 0.5 Hz, 1 Hz) and compared each threshold to quantitative measures of quiet stance postural control in 33 healthy young adults (mean = 24.9 years, SD = 3.67). Our data showed a significant linear association between 0.5 Hz roll tilt thresholds and the root mean square distance (RMSD) of the center of pressure in the mediolateral (ML; ß = 5.31, p = 0.002, 95% CI = 2.1-8.5) but not anteroposterior (AP; ß = 5.13, p = 0.016, 95% CI = 1.03-9.23) direction (Bonferroni corrected α of 0.006). In contrast, vestibular thresholds measured at 0.2 Hz and 1 Hz did not show a significant correlation with ML or AP RMSD. In a multivariable regression model, controlling for both 0.2 Hz and 1 Hz thresholds, the significant effect of 0.5 Hz roll tilt thresholds persisted (ß = 5.44, p = 0.029, CI = 0.60-10.28), suggesting that the effect cannot be explained by elements shared by vestibular thresholds measured at the three frequencies. These data suggest that vestibular noise is significantly associated with the temporospatial control of quiet stance in the mediolateral plane when visual and proprioceptive cues are degraded (i.e., eyes closed, standing on foam). Furthermore, the selective association of quiet-stance sway with 0.5 Hz roll tilt thresholds, but not thresholds measured at lower (0.2 Hz) or higher (1.0 Hz) frequencies, may reflect the influence of noise that results from the temporal integration of noisy canal and otolith cues.

16.
J Neurophysiol ; 126(3): 875-887, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320866

RESUMO

Accurate perception of gravity and translation is fundamental for balance, navigation, and motor control. Previous studies have reported that perceptual thresholds for earth-vertical (i.e., parallel to gravity) and earth-horizontal (i.e., perpendicular to gravity) translations are equivalent in healthy adults, suggesting that the nervous system compensates for the presence of gravity. However, past study designs were not able to fully separate the effect of gravity from the potential effects of motion direction and body orientation. To quantify the effect of gravity on translation perception relative to these alternative factors, we measured vestibular perceptual thresholds for three motion directions (inter-aural, naso-occipital, and superior-inferior) and three body orientations (upright, supine, and ear-down). In contrast to prior reports, our data suggest that the nervous system does not universally compensate for the effects of gravity during translation, instead, we show that the colinear effect of gravity significantly decreases the sensitivity to stimuli for motions sensed by the utricles (inter-aural and naso-occipital translation), but this effect was not significant for motions sensed by the saccules (superior-inferior translations). We also identified increased thresholds for superior-inferior translation, suggesting decreased sensitivity of motions sensed predominantly by the saccule. An overall effect of body orientation on perception was seen; however, post hoc analyses suggest that this orientation effect may reflect the impact of gravity on self-motion perception. Overall, our data provide fundamental insights into the manner by which the nervous system processes vestibular self-motion cues, showing that the effect of gravity on translation perception is impacted by the direction of motion.NEW & NOTEWORTHY Perception of gravity and translation are fundamental for self-motion perception, balance, and motor control. The central nervous system must accurately disambiguate peripheral otolith signals encoding both linear acceleration and gravity. In contrast to past reports, we show that perception of translation depends on both motion relative to gravity and motion relative to the head. These results provide fundamental insights into otolith-mediated perception and suggest that the nervous system must compensate for the presence of gravity.


Assuntos
Sensação Gravitacional , Percepção de Movimento , Vestíbulo do Labirinto/fisiologia , Adulto , Feminino , Humanos , Masculino , Postura
17.
Psychon Bull Rev ; 28(5): 1433-1457, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33825094

RESUMO

Psychometric curve fits relate physical stimuli to an observer's performance. In experiments an observer may "lapse" and respond with a random guess, which may negatively impact (e.g., bias) the psychometric fit parameters. A lapse-rate model has been popularized by Wichmann and Hill, which reduces the impact of lapses on other estimated parameters by adding a parameter to model the lapse rate. Since lapses are discrete events, we developed a discrete lapse theory and tested a "lapse identification" algorithm to identify individual outlier trials (i.e., potential lapses) based upon an approximate statistical criterion and discard these trials. Specifically, we focused on stimuli sampled using an adaptive staircase for a one-interval, direction-recognition task (i.e., psychometric function ranging from 0 to 1 and the spread of the curve corresponds to the threshold, which is often a parameter of interest for many fitted psychometric functions). Through simulations, we found that as the lapse rate increased the threshold became substantially overestimated, consistent with earlier analyses. While the lapse-rate model reduced the overestimation of threshold with many lapses, with lower lapse rates it yielded substantial threshold underestimation, though less so when fitting many (e.g., 1,000) trials. In comparison, the lapse-identification algorithm yielded accurate threshold estimates across a wide range of lapse rates (from 0 to 5%), which is critical since the lapse rate is seldom known. We further demonstrate the performance of the lapse-identification algorithm to be suitable for a variety of experimental conditions and conclude with some considerations of its use. In particular, we suggest using the lapse-identification algorithm unless the experiment has many trials (e.g., >500) or if somehow the lapse rate is known to be high (e.g., ≥5%), for which the lapse-rate model approaches remain preferred.


Assuntos
Algoritmos , Viés , Humanos , Psicometria
18.
Front Neurol ; 12: 643634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679594

RESUMO

Vestibular disorders pose a substantial burden on the healthcare system due to a high prevalence and the severity of symptoms. Currently, a large portion of patients experiencing vestibular symptoms receive an ambiguous diagnosis or one that is based solely on history, unconfirmed by any objective measures. As patients primarily experience perceptual symptoms (e.g., dizziness), recent studies have investigated the use of vestibular perceptual thresholds, a quantitative measure of vestibular perception, in clinical populations. This review provides an overview of vestibular perceptual thresholds and the current literature assessing use in clinical populations as a potential diagnostic tool. Patients with peripheral and central vestibular pathologies, including bilateral vestibulopathy and vestibular migraine, show characteristic changes in vestibular thresholds. Vestibular perceptual thresholds have also been found to detect subtle, sub-clinical declines in vestibular function in asymptomatic older adults, suggesting a potential use of vestibular thresholds to augment or complement existing diagnostic methods in multiple populations. Vestibular thresholds are a reliable, sensitive, and specific assay of vestibular precision, however, continued research is needed to better understand the possible applications and limitations, especially with regard to the diagnosis of vestibular disorders.

19.
J Neurosci ; 41(17): 3879-3888, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33731447

RESUMO

Gravity is a pervasive environmental stimulus, and accurate graviception is required for optimal spatial orientation and postural stability. The primary graviceptors are the vestibular organs, which include angular velocity (semicircular canals) and linear acceleration (otolith organs) sensors. Graviception is degraded in patients with vestibular damage, resulting in spatial misperception and imbalance. Since minimal therapy is available for these patients, substantial effort has focused on developing a vestibular prosthesis or vestibular implant (VI) that reproduces information normally provided by the canals (since reproducing otolith function is very challenging technically). Prior studies demonstrated that angular eye velocity responses could be driven by canal VI-mediated angular head velocity information, but it remains unknown whether a canal VI could improve spatial perception and posture since these behaviors require accurate estimates of angular head position in space relative to gravity. Here, we tested the hypothesis that a canal VI that transduces angular head velocity and provides this information to the brain via motion-modulated electrical stimulation of canal afferent nerves could improve the perception of angular head position relative to gravity in monkeys with severe vestibular damage. Using a subjective visual vertical task, we found that normal female monkeys accurately sensed the orientation of the head relative to gravity during dynamic tilts, that this ability was degraded following bilateral vestibular damage, and improved when the canal VI was used. These results demonstrate that a canal VI can improve graviception in vestibulopathic animals, suggesting that it could reduce the disabling perceptual and postural deficits experienced by patients with severe vestibular damage.SIGNIFICANCE STATEMENT Patients with vestibular damage experience impaired vision, spatial perception, and balance, symptoms that could potentially respond to a vestibular implant (VI). Anatomic features facilitate semicircular canal (angular velocity) prosthetics but inhibit approaches with the otolith (linear acceleration) organs, and canal VIs that sense angular head velocity can generate compensatory eye velocity responses in vestibulopathic subjects. Can the brain use canal VI head velocity information to improve estimates of head orientation (e.g., head position relative to gravity), which is a prerequisite for accurate spatial perception and posture? Here we show that a canal VI can improve the perception of head orientation in vestibulopathic monkeys, results that are highly significant because they suggest that VIs mimicking canal function can improve spatial orientation and balance in vestibulopathic patients.


Assuntos
Orientação Espacial , Próteses e Implantes , Vestíbulo do Labirinto/lesões , Algoritmos , Animais , Meato Acústico Externo , Eletrodos Implantados , Movimentos Oculares , Feminino , Gravitação , Movimentos da Cabeça , Macaca mulatta , Postura , Reflexo Vestíbulo-Ocular/fisiologia
20.
Front Neurol ; 12: 635305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633678

RESUMO

Aging is associated with progressive declines in both the vestibular and human balance systems. While vestibular lesions certainly contribute to imbalance, the specific contributions of age-related vestibular declines to age-related balance impairment is poorly understood. This gap in knowledge results from the absence of a standardized method for measuring age-related changes to the vestibular balance pathways. The purpose of this manuscript is to provide an overview of the existing body of literature as it pertains to the methods currently used to infer vestibular contributions to age-related imbalance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA