Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123110, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086506

RESUMO

Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.


Assuntos
Charadriiformes , Mercúrio , Selênio , Oligoelementos , Animais , Humanos , Mercúrio/análise , Isótopos de Carbono , Regiões Árticas , Monitoramento Ambiental
2.
Curr Biol ; 31(17): 3964-3971.e3, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34520704

RESUMO

Each winter, the North Atlantic Ocean is the stage for numerous cyclones, the most severe ones leading to seabird mass-mortality events called "winter wrecks."1-3 During these, thousands of emaciated seabird carcasses are washed ashore along European and North American coasts. Winter cyclones can therefore shape seabird population dynamics4,5 by affecting survival rates as well as the body condition of surviving individuals and thus their future reproduction. However, most often the geographic origins of impacted seabirds and the causes of their deaths remain unclear.6 We performed the first ocean-basin scale assessment of cyclone exposure in a seabird community by coupling winter tracking data for ∼1,500 individuals of five key North Atlantic seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia, and Rissa tridactyla) and cyclone locations. We then explored the energetic consequences of different cyclonic conditions using a mechanistic bioenergetics model7 and tested the hypothesis that cyclones dramatically increase seabird energy requirements. We demonstrated that cyclones of high intensity impacted birds from all studied species and breeding colonies during winter but especially those aggregating in the Labrador Sea, the Davis Strait, the surroundings of Iceland, and the Barents Sea. Our broad-scale analyses suggested that cyclonic conditions do not increase seabird energy requirements, implying that they die because of the unavailability of their prey and/or their inability to feed during cyclones. Our study provides essential information on seabird cyclone exposure in a context of marked cyclone regime changes due to global warming.8.


Assuntos
Charadriiformes , Tempestades Ciclônicas , Animais , Oceano Atlântico , Aves , Humanos , Estações do Ano
3.
Glob Chang Biol ; 27(7): 1457-1469, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33347684

RESUMO

We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a "no mitigation" scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocean.


Assuntos
Mudança Climática , Ecossistema , Animais , Oceano Atlântico , Humanos , Paris , Estações do Ano
4.
Gen Comp Endocrinol ; 285: 113296, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589833

RESUMO

The 24 h geophysical light-dark cycle is the main organizer of daily rhythms, scheduling physiology and behavior. This cycle attenuates greatly during the continuous light of summer at polar latitudes, resulting in species-specific and even individual-specific patterns of behavioral rhythmicity, but the physiological mechanisms underlying this variation are poorly understood. To address this knowledge gap and to better understand the roles of the hormones melatonin and corticosterone in rhythmic behavior during this 'polar day', we exploited the behavior of thick-billed murres (Uria lomvia), a charadriiform seabird with sexually opposite ('antiphase') activity-rhythms that have a duration of 24 h. Melatonin concentration in the plasma of inactive males was unexpectedly high around midday and subsequently fell during a sudden decrease in light intensity as the colony became shaded. Corticosterone concentration in plasma did not vary with time of day or activity in either sex. While the reasons for these unusual patterns remain unclear, we propose that a flexible melatonin response and little diel variation of corticosterone may be adaptive in thick-billed murres, and perhaps other polar birds and mammals, by stabilizing glucocorticoids' role of modulating energy storage and mobilization across the diel cycle and facilitating the appropriate reaction to unexpected stimuli experienced across the diel cycle while attending the colony.


Assuntos
Charadriiformes/sangue , Charadriiformes/fisiologia , Ritmo Circadiano/fisiologia , Corticosterona/sangue , Melatonina/sangue , Animais , Feminino , Luz , Masculino , Estações do Ano
5.
Ecol Evol ; 7(21): 8742-8752, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29177032

RESUMO

Although assessments of winter carryover effects on fitness-related breeding parameters are vital for determining the links between environmental variation and fitness, direct methods of determining overwintering distributions (e.g., electronic tracking) can be expensive, limiting the number of individuals studied. Alternatively, stable isotope analysis in specific tissues can be used as an indirect means of determining individual overwintering areas of residency. Although increasingly used to infer the overwintering distributions of terrestrial birds, stable isotopes have been used less often to infer overwintering areas of marine birds. Using Arctic-breeding common eiders, we test the effectiveness of an integrated stable isotope approach (13-carbon, 15-nitrogen, and 2-hydrogen) to infer overwintering locations. Knowing the overwinter destinations of eiders from tracking studies at our study colony at East Bay Island, Nunavut, we sampled claw and blood tissues at two known overwintering locations, Nuuk, Greenland, and Newfoundland, Canada. These two locations yielded distinct tissue-specific isotopic profiles. We then compared the isotope profiles of tissues collected from eiders upon their arrival at our breeding colony, and used a k-means cluster analysis approach to match arriving eiders to an overwintering group. Samples from the claws of eiders were most effective for determining overwinter origin, due to this tissue's slow growth rate relative to the 40-day turnover rate of blood. Despite taking an integrative approach using multiple isotopes, k-means cluster analysis was most effective when using 13-carbon alone to assign eiders to an overwintering group. Our research demonstrates that it is possible to use stable isotope analysis to assign an overwintering location to a marine bird. There are few examples of the effective use of this technique on a marine bird at this scale; we provide a framework for applying this technique to detect changes in the migration phenology of birds' responses to rapid changes in the Arctic.

6.
Biol Lett ; 12(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27651530

RESUMO

In contrast to daily rhythms that are common in the presence of the geophysical light-dark cycle, organisms at polar latitudes exhibit many diel activity patterns during natural periods of continuous solar light or darkness (polar day and night, respectively), from 24 h rhythms to arrhythmicity. In Arctic Greenland (73.7° N, 56.6° W) during polar day, we observed breeding-site attendance rhythms of thick-billed murres (Uria lomvia; n = 21 pairs), a charadriiform seabird, which provide biparental care at the colony. We found that U. lomvia egg-incubation and chick-brooding attendance is rhythmic and synchronized to the geophysical day (mean period length [rhythm duration] ± 95% confidence interval = 24.13 ± 0.52 h). Individual pair members had temporally segregated, sex-specific colony-attendance rhythms that were opposite (inverted) to each other, and these sex-specific rhythms were prominent at the population level. Our results provide a basis for investigating circadian systems at polar latitudes and sex-specific parental-care strategies.


Assuntos
Charadriiformes/fisiologia , Ritmo Circadiano/fisiologia , Comportamento de Nidação/fisiologia , Animais , Regiões Árticas , Feminino , Groenlândia , Luz , Masculino , Caracteres Sexuais
7.
Mar Pollut Bull ; 84(1-2): 411-7, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24837321

RESUMO

Marine birds have been found to ingest plastic debris in many of the world's oceans. Plastic accumulation data from necropsies findings and regurgitation studies are presented on 13 species of marine birds in the North Atlantic, from Georgia, USA to Nunavut, Canada and east to southwest Greenland and the Norwegian Sea. Of the species examined, the two surface plungers (great shearwaters Puffinus gravis; northern fulmars Fulmarus glacialis) had the highest prevalence of ingested plastic (71% and 51%, respectively). Great shearwaters also had the most pieces of plastics in their stomachs, with some individuals containing as many of 36 items. Seven species contained no evidence of plastic debris. Reporting of baseline data as done here is needed to ensure that data are available for marine birds over time and space scales in which we see changes in historical debris patterns in marine environments (i.e. decades) and among oceanographic regions.


Assuntos
Aves , Conteúdo Gastrointestinal , Resíduos/análise , Poluentes da Água , Animais , Canadá , Ingestão de Alimentos , Monitoramento Ambiental , Georgia , Groenlândia , Oceanografia , Oceanos e Mares , Plásticos/análise , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA