Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Materials (Basel) ; 16(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770310

RESUMO

Finding innovative and highly performing approaches for NOx degradation represents a key challenge to enhance the air quality of our environment. In this study, the high efficiency of PANI/TiO2 nanostructures in the NO2 abatement both in the dark and under light irradiation is demonstrated for the first time. Heterostructures were synthesized by a "green" method and their composition, structure, morphology and oxidation state were investigated by a combination of characterization techniques. The results show that the unique PANI structure promotes two mechanisms for the NO2 abatement in the dark (adsorption on the polymeric chains and chemical reduction to NO), whereas the photocatalytic behavior prevails under light irradiation, leading to the complete NOx degradation. The best-performing materials were subjected to recycling tests, thereby showing high stability without any significant activity loss. Overall, the presented material can represent an innovative and efficient night-and-day solution for NOx abatement.

3.
J Colloid Interface Sci ; 628(Pt A): 82-89, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908434

RESUMO

HYPOTHESIS: Oxide-stabilized emulsions generally require a surface functionalization step to tune the oxide wettability, often involving hazardous hydrophobizing agents. Here, we propose the in situ functionalization of ZnO in vegetable oils without the addition of any modifier, resulting in the one-step formation of highly stable Pickering emulsions. EXPERIMENTS: The role of ZnO surface features was studied by modifying the particles' wettability through surface functionalization and by comparing different oil phases. The emulsion stability was assessed through aging tests, multiple hot-and-cold cycles, centrifugation, and addition of multiple electrolytes. FINDINGS: While the wetting features of the functionalized oxide play a crucial role when the oil phase is methyl octanoate, emulsions based on vegetable oils form also using hydrophilic ZnO. During the emulsification, an in situ functionalization of bare ZnO particles takes place due to the fatty acids present in vegetable oil. These in situ-generated systems lead to stable emulsions showing < 2 µm-diameter oil droplets. The resulting emulsions display excellent stability over time (over seven months) and against temperature variations, mechanical stress and increased ionic strength. Finally, we demonstrate that this approach can be extended to a variety of vegetable oils and oxides with different morphologies.


Assuntos
Óxido de Zinco , Emulsões , Ácidos Graxos , Óxidos , Tamanho da Partícula , Óleos de Plantas , Água
4.
Chem Rev ; 122(3): 3219-3258, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818504

RESUMO

Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.

5.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388747

RESUMO

In recent years, nanoparticles have come under close scrutiny for their possible health and environmental issues, making them less attractive for photocatalytic applications in air or water purification. Replacing free nano-powders with active and stable films is thus a fundamental step towards developing effective photocatalytic devices. Aluminum represents a cheap and technologically-relevant substrate, but its photocatalytic applications have been hampered by adhesion issues and metal ion diffusion within the photocatalytic layer. In this work, the use of silica interlayers is investigated as a strategy to promote adhesion, efficiency and reusability of TiO2films deposited on aluminum plates. Films were prepared from stable titania sols to avoid the use of nano-powders. Aluminum substrates with different surface morphology were investigated and the role of the silica interlayer thickness was studied. Films were extensively characterized, studying their structure, morphology, optical properties, adhesion and hardness. Self-cleaning properties were studied with respect to their superhydrophilicity and ability to resist fouling via alkylsilanes. Photocatalytic degradation tests were carried out using both volatile organic compounds and NOx, also in recycle tests. The presence of the silica interlayer proved crucial to promote the film robustness and photocatalytic activity. The substrate morphology determined the optimal interlayer thickness, especially in terms of the film reusability.

6.
Ultrason Sonochem ; 75: 105615, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34111723

RESUMO

The degradation of diclofenac has been realized for the first time by a piezo-enhanced sonophotocatalytic approach based on ZnO. The sonophotocatalytic degradation showed a slight enhancement in the degradation of the parent compound, whereas strong synergistic effects were observed for the mineralization process when suitable ZnO morphologies are used, reaching 70% of complete degradation of 25 ppm diclofenac using 0.1 g/L ZnO in 360 min. Tests in a complex water matrix show enhanced diclofenac removal, outperforming a TiO2 benchmark photocatalyst. These promising experimental results promote this process as a good alternative to traditional degradation approaches for remediation of real water matrices.

7.
Materials (Basel) ; 14(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801042

RESUMO

Cinnamaldehyde is a natural product with antibacterial, antifungal, and anti-inflammatory properties, poorly stable in environmental conditions. Systems for the controlled release of cinnamaldehyde are of great interest to the food and pharmaceutical industries. Here, a new oxide-based construct for the release of cinnamaldehyde catalyzed by acidic pH was obtained by a facile grafting method based on amino-silane linkers and imine chemistry. The grafting procedure led to a loading of ca. 5 molecules/nm2, determined on oxide powders with CHN and TGA measurements. The covalent grafting of cinnamaldehyde, demonstrated by FTIR analyses, preserved the molecule stability, simplifying storage. Release tests were performed at different pH values (between 5.0 and 7.4). Thanks to imine chemistry, a fast cinnamaldehyde (CIN) release was observed in a pH 5.0 environment. Using 1 mg/mL suspensions, CIN concentrations within the range adopted in the food industry were obtained (12.4 ppm). The grafting procedure was also performed on a porous film based on a photocatalytic oxide, demonstrating the versatility of this method, adaptable to both powders and macroscopic materials. By taking advantage of the photoactivity of the oxide, regeneration of the fouled film was achieved upon UV irradiation for 1 h, opening the door to reusable devices for the controlled release of cinnamaldehyde.

8.
Materials (Basel) ; 13(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806721

RESUMO

Many medical imaging techniques use some form of ionizing radiation. This radiation is not only potentially harmful for the patient, but also for the medical personnel. An alternative imaging technique uses near-infrared (NIR) emitting luminescent particles as tracers. If the luminescent probes are excited inside the body, autofluorescence from the biological tissues is also induced. This problem can be circumvented by using time-gated imaging. Hereby, the light collection only starts when the fluorescence of the tissue has decayed. This requires particles showing both excitation and emission in the near-infrared and a long decay time so that they can be used in time-gated imaging. In this work, Nd-doped GdVO4 NIR emitting particles were prepared using solid state reaction. Particles could be efficiently excited at 808 nm, right in the first transparency window for biological tissues, emitted in the second transparency window at around 1064 nm, and showed a decay time of the order of 70 µs, sufficiently long for time-gating. By using a Gd-containing host, these particles could be ideally suited for multimodal optical/magnetic imaging after size reduction and surface functionalization.

9.
Nanomaterials (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585978

RESUMO

Sn-modification of TiO2 photocatalysts has been recently proposed as a suitable strategy to improve pollutant degradation as well as hydrogen production. In particular, visible light activity could be promoted by doping with Sn2+ species, which are, however, thermally unstable. Co-promotion with N and Sn has been shown to lead to synergistic effects in terms of visible light activity, but the underlying mechanism has, so far, been poorly understood due to the system complexity. Here, the structural, optical, and electronic properties of N,Sn-copromoted, nanostructured TiO2 from sol-gel synthesis were investigated: the Sn/Ti molar content was varied in the 0-20% range and different post-treatments (calcination and low temperature hydrothermal treatment) were adopted in order to promote the sample crystallinity. Depending on the adopted post-treatment, the optical properties present notable differences, which supports a combined role of Sn dopants and N-induced defects in visible light absorption. X-ray absorption spectroscopy at the Ti K-edge and Sn L2,3-edges shed light onto the electronic properties and structure of both Ti and Sn species, evidencing a marked difference at the Sn L2,3-edges between the samples with 20% and 5% Sn/Ti ratio, showing, in the latter case, the presence of tin in a partially reduced state.

10.
Ultrason Sonochem ; 67: 105123, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32283492

RESUMO

The nonsteroidal anti-inflammatory drug sodium diclofenac (DC) is an emerging water pollutant which resists conventional wastewater treatments. Here the sonophotocatalytic degradation of DC was carried out using micrometric TiO2 (both pristine and Ag-decorated), UV-A irradiation and 20 kHz pulsed ultrasound. Sonophotocatalytic tests were compared with photolysis, sonolysis, sonophotolysis, sonocatalysis and photocatalysis data performed in the same conditions. A synergy index of over 2 was determined for tests with pristine TiO2, while values close to 1.3 were observed for Ag-TiO2. Reaction intermediates were studied by HPLC-MS, showing degradation mechanisms activated by hydroxyl radicals. Similar pathways were identified for photocatalytic and sonophotocatalytic tests, although the latter led to more oxidized compounds. Different reactor configurations (static and dynamic set ups) were studied. Sequential and simultaneous application of UV light and ultrasound led to similar performance. The role of water matrix was investigated using ultrapure and drinking water, showing marked detrimental effects of electrolytes on the DC degradation. Overall, the combined treatment proved more efficient than photocatalysis alone especially in demanding working conditions, like in drinking water matrices.


Assuntos
Diclofenaco/química , Água Potável/química , Processos Fotoquímicos , Sonicação , Titânio/química , Catálise , Cinética , Tamanho da Partícula , Poluentes Químicos da Água/química
11.
Ultrason Sonochem ; 66: 105119, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32252008

RESUMO

The synthesis of ZnO photocatalysts by ultrasound-assisted technique was here investigated. Several experimental parameters including the zinc precursor (acetate, chloride, nitrate), sonication conditions (amplitude, pulse) and post-synthetic thermal treatment (up to 500 °C) were studied. Crystalline ZnO samples were obtained without thermal treatments due to the adopted reactant ratios and synthesis temperature. Sonication plays a major role on the morphological oxide features in terms of particle size and surface area, the latter showing a 20-fold increase with respect to conventional synthesis. Interestingly, 1 and 3 s sonication pulses led to morphological properties similar to continuous sonication. A thermal treatment at moderate temperatures (400-450 °C) promoted the loss of surface hydroxylation and the formation of lattice defects, while higher temperatures were detrimental for the sample morphology. The prepared ZnO was decorated with WO3 particles comparing an ultrasound-assisted technique using 1 s pulses with a conventional approach, giving rise to composites with promoted visible light absorption. Samples were tested towards the photocatalytic degradation of nitrogen oxides (500-1000 ppb) in humidified air under both UV and visible light. By carefully controlling the synthetic procedure, better performance were observed with respect to the commercial benchmark. Samples from ultrasound-assisted syntheses, also in the case of pulsed sonication, showed consistently better results than conventional references, in particular for ZnO-WO3 composites. The composite by ultrasound-assisted synthesis showed > 95% degradation in 180 min and doubled NOx degradation under visible light with respect to the conventional composite.

12.
Nanomaterials (Basel) ; 10(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121437

RESUMO

Polyaniline (PANI)-materials have recently been proposed for environmental remediation applications thanks to PANI stability and sorption properties. As an alternative to conventional PANI oxidative syntheses, which involve toxic carcinogenic compounds, an eco-friendly procedure was here adopted starting from benign reactants (aniline-dimer and H2O2) and initiated by ultraviolet (UV)-irradiated TiO2. To unlock the full potential of this procedure, we investigated the roles of TiO2 and H2O2 in the nanocomposites synthesis, with the aim of tailoring the properties of the final material to the desired application. The nanocomposites prepared by varying the TiO2:H2O2:aniline-dimer molar ratios were characterized for their thermal, optical, morphological, structural and surface properties. The reaction mechanism was investigated via mass analyses and X-ray photoelectron spectroscopy. The nanocomposites were tested on both methyl orange and hexavalent chromium removal. A fast dye-sorption was achieved also in the presence of interferents and the recovery of the dye was obtained upon eco-friendly conditions. An efficient Cr(VI) abatement was obtained also after consecutive tests and without any regeneration treatment. The fine understanding of the reaction mechanism allowed us to interpret the pollutant-removal performances of the different materials, leading to tailored nanocomposites in terms of maximum sorption and reduction capability upon consecutive tests even in simulated drinking water.

13.
Polymers (Basel) ; 12(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952200

RESUMO

Polyamide 6 (PA6) suffers from fast degradation in humid conditions due to hydrolysis of amide bonds, which limits its durability. The addition of nanotubular fillers represents a viable strategy for overcoming this issue, although the additive/polymer interface at high filler content can become privileged site for moisture accumulation. As a cost-effective and versatile material, halloysite nanotubes (HNT) were investigated to prepare PA6 nanocomposites with very low loadings (1-45% w/w). The roles of the physicochemical properties of two differently sourced HNT, of filler functionalization with (3-aminopropyl)triethoxysilane and of dispersion techniques (in situ polymerization vs. melt blending) were investigated. The aspect ratio (5 vs. 15) and surface charge (-31 vs. -59 mV) of the two HNT proved crucial in determining their distribution within the polymer matrix. In situ polymerization of functionalized HNT leads to enclosed and well-penetrated filler within the polymer matrix. PA6 nanocomposites crystal growth and nucleation type were studied according to Avrami theory, as well as the formation of different crystalline structures (α and γ forms). After 1680 h of ageing, functionalized HNT reduced the diffusion of water into polymer, lowering water uptake after 600 h up to 90%, increasing the materials durability also regarding molecular weights and rheological behavior.

14.
J Phys Chem C Nanomater Interfaces ; 124(26): 14202-14212, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33815647

RESUMO

Ambient-pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles toward reducing gases. H2 was first used as a test case, showing that the gas phase and surface states can be simultaneously probed: Soft-XAS at the O K-edge gains sensitivity toward the gas phase, while at the Sn M4,5-edges, tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2 - x layer at the surface of SnO2 is readily reoxidized to SnO2 by treating the sample with O2 at mild temperatures (>200 °C), revealing the nature of "electron sponge" of tin oxide. The experiments, combined with DFT calculations, allowed devising of a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds and the formation of methoxy- and/or methyl-tin species at the surface.

15.
R Soc Open Sci ; 6(1): 181662, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800395

RESUMO

TiO2/SnO2 composites have attracted considerable attention for their application in photocatalysis, fuel cells and sensors. Structural, morphological, optical and surface features play a pivotal role in photoelectrochemical applications and are critically related to the synthetic route. Most of the reported synthetic procedures require high-temperature treatments in order to tailor the sample crystallinity, usually at the expense of surface hydroxylation and morphology. In this work, we investigate the role of a treatment in an autoclave at a low temperature (100°C) on the sample properties and photocatalytic performance. With respect to samples calcined at 400°C, the milder crystallization treatment promotes anatase phase, mesoporosity and water chemi/physisorption, while reducing the incorporation of heteroatoms within the TiO2 lattice. The role of Sn content was also investigated, showing a marked influence, especially on the structural properties. Notably, at a high content, Sn favours the formation of rutile TiO2 at very low reaction temperatures (100°C), thanks to the structural compatibility with cassiterite SnO2. Selected samples were tested towards the photocatalytic degradation of tetracycline in water under UV light. Overall, the low-temperature treatment enables to tune the TiO2 phase composition while maintaining its surface hydrophilicity and gives rise to well-dispersed SnO2 at the TiO2 surface.

16.
Nanomaterials (Basel) ; 8(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388802

RESUMO

The growing demand of new materials with tailored physicochemical properties has propelled hybrid materials to a position of prominence in materials science by virtue of their remarkable new properties and multifunctional nature. [...].

17.
Chem Commun (Camb) ; 54(76): 10702-10705, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30175823

RESUMO

An environmentally benign procedure for the preparation of polyaniline/TiO2 composites is presented. The UV irradiation-induced synthesis leads to materials with good crystallinity and tailored morphology, showing promising sorption and recycle properties in dye removal tests. A reaction mechanism is proposed on the basis of LC-MS and FT-IR investigations.

18.
J Phys Chem C Nanomater Interfaces ; 121(1): 430-440, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28191270

RESUMO

The surface functionalization of TiO2-based materials with alkylsilanes is attractive in several cutting-edge applications, such as photovoltaics, sensors, and nanocarriers for the controlled release of bioactive molecules. (3-Aminopropyl)triethoxysilane (APTES) is able to self-assemble to form monolayers on TiO2 surfaces, but its adsorption geometry and solar-induced photodegradation pathways are not well understood. We here employ advanced experimental (XPS, NEXAFS, AFM, HR-TEM, and FT-IR) and theoretical (plane-wave DFT) tools to investigate the preferential interaction mode of APTES on anatase TiO2. We demonstrate that monomeric APTES chemisorption should proceed through covalent Si-O-Ti bonds. Although dimerization of the silane through Si-O-Si bonds is possible, further polymerization on the surface is scarcely probable. Terminal amino groups are expected to be partially involved in strong charge-assisted hydrogen bonds with surface hydroxyl groups of TiO2, resulting in a reduced propensity to react with other species. Solar-induced mineralization proceeds through preferential cleavage of the alkyl groups, leading to the rapid loss of the terminal NH2 moieties, whereas the Si-bearing head of APTES undergoes slower oxidation and remains bound to the surface. The suitability of employing the silane as a linker with other chemical species is discussed in the context of controlled degradation of APTES monolayers for drug release and surface patterning.

19.
ACS Omega ; 2(8): 4972-4981, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023733

RESUMO

Two sol-gel synthetic routes for the preparation of CaTiO3:Pr3+ red emitting phosphors were compared, with the aim of producing nanostructured materials with tailored luminescence/afterglow properties. The effect of the synthetic parameters, such as the addition of a stabilizer and calcination temperature, on the structural, morphological, and optical properties was investigated. The desired perovskite phase was obtained at a calcination temperature of 800 °C or higher. Although the use of acetic acid as the chelating agent leads to micrometric particles with heterogeneous composition, the presence of hydroxypropylcellulose (HPC) results in smaller, less aggregated particles as well as in a high phase purity. At the highest HPC content, surface Ca-rich impurities were detected, although no segregated Ca-rich phases were detectable by X-ray powder diffraction analyses. Luminescence properties were found to be positively related to the phase purity of the oxide, with the highest quantum yields at temperatures equal to or higher than 1000 °C. On the contrary, persistent luminescence properties were highest at intermediate calcination temperatures and for samples synthesized with acetic acid. Overall, a notable role of oxygen vacancies resulting from local Ca excess was observed, acting as trap levels promoting longer relaxation pathways. Thanks to the small-sized particles and best steady-state luminescent properties due to a substantial decrease of lattice defects, the HPC synthesis is a promising strategy for light-emitting diode applications. On the other hand, the acetic acid synthesis promoted a higher defect density, which is required for an efficient yield of light emission in the long time range and is thus more suitable for afterglow applications.

20.
Photochem Photobiol Sci ; 16(1): 60-66, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27841891

RESUMO

Pharmaceutics and personal care products (PPCPs) are raising growing concern due to their widespread usage and resistance to conventional remediation techniques. Several of them raise significant health and environmental concerns, especially when present in complex mixtures. Due to their chemical resistance, Advanced Oxidation Processes (AOPs) are needed for their complete removal from surface and wastewaters. In the present work, photocatalysis by titanium dioxide (TiO2) under UV and simulated solar irradiation was adopted to degrade tetracycline hydrochloride, paracetamol, caffeine and atenolol, both as single pollutants and in mixtures. All molecules showed high removal and mineralization degrees. Moreover, no interference effects decreased the efficiency of the processes in the case of pollutant mixtures, achieving 60% of mineralization after 6 h. An immobilized TiO2 system was also developed by depositing titania on titanium meshes. A 50% mineralization degree of the pollutant mixture was obtained after 6 h, revealing a suitable efficiency for field applications. Eventually, the impact of the matrix composition on the photocatalytic efficiency was investigated by studying the reaction both in simulated drinking water and in commercial bottled mineral water. The scavenger role played by HCO3- species appears to be dominant in inhibiting the mineralization.


Assuntos
Titânio/química , Poluentes Químicos da Água/química , Água/química , Acetaminofen/química , Cafeína/química , Catálise , Fotólise/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray , Tetraciclina/química , Raios Ultravioleta , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA