Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 190: 106087, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473598

RESUMO

Fatty acids (FAs) are used, often in combination with stable isotopes (SIs), as chemical biomarkers to assess the contribution of different prey to the diet of consumers and define food web structure and dynamics. Extraction of lipids is traditionally carried out using methanol (MeOH) combined with chloroform or dichloromethane, these latter being well-known environmental pollutant and potential carcinogenic agents. Recently, extraction protocols based on methyl tert-butyl ether (MTBE) and MeOH have been proposed as an alternative to halogenated solvents in lipidomic studies. However, no specific investigation has been performed to assess MTBE suitability in marine ecological studies including FA analysis together with SI measurements. We used an analytical workflow for qualitative and quantitative analysis of FAs and SIs in field samples of phytoplankton, zooplankton and the scyphomedusa Pelagia noctiluca, applying MTBE in comparison with chloroform- and dichloromethane-based protocols for total lipid extraction. Our analysis suggested that MTBE is a reliable substitute for lipid extraction in trophic ecology studies in marine planktonic organisms.


Assuntos
Ácidos Graxos , Cadeia Alimentar , Ácidos Graxos/análise , Plâncton , Clorofórmio/análise , Cloreto de Metileno/análise , Fluxo de Trabalho , Metanol , Isótopos de Carbono/análise
2.
Mar Drugs ; 20(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35447939

RESUMO

The world's population growth and consequent increased demand for food, energy and materials together with the decrease of some natural resources have highlighted the compelling need to use sustainably existing resources and find alternative sources to satisfy the needs of growing and longer-aging populations. In this review, we explore the potential use of a specific fisheries by-catch, jellyfish, as a sustainable source of high-value compounds. Jellyfish are often caught up with fish into fishing gear and nets, then sorted and discarded. Conversely, we suggest that this by-catch may be used to obtain food, nutraceutical products, collagen, toxins and fluorescent compounds to be used for biomedical applications and mucus for biomaterials. These applications are based on studies which indicate the feasibility of using jellyfish for biotechnology. Because jellyfish exhibit seasonal fluctuations in abundance, jellyfish by-catches likely follow the same pattern. Therefore, this resource may not be constantly available throughout the year, so the exploitation of the variable abundances needs to be optimized. Despite the lack of data about jellyfish by-catches, the high value of their compounds and their wide range of applications suggest that jellyfish by-catches are a resource which is discarded at present, but needs to be re-evaluated for exploitation within the context of a circular economy in the era of zero waste.


Assuntos
Cnidários , Cifozoários , Animais , Biotecnologia , Suplementos Nutricionais , Pesqueiros , Peixes
3.
Sci Rep ; 11(1): 18653, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545165

RESUMO

Ecologists and evolutionary biologists have been looking for the key(s) to the success of scyphomedusae through their long evolutionary history in multiple habitats. Their ability to generate young medusae (ephyrae) via two distinct reproductive strategies, strobilation or direct development from planula into ephyra without a polyp stage, has been a potential explanation. In addition to these reproductive modes, here we provide evidence of a third ephyral production which has been rarely observed and often confused with direct development from planula into ephyra. Planulae of Aurelia relicta Scorrano et al. 2017 and Cotylorhiza tuberculata (Macri 1778) settled and formed fully-grown polyps which transformed into ephyrae within several days. In distinction to monodisk strobilation, the basal polyp of indirect development was merely a non-tentaculate stalk that dissolved shortly after detachment of the ephyra. We provide a fully detailed description of this variant that increases reproductive plasticity within scyphozoan life cycles and is different than either true direct development or the monodisk strobilation. Our observations of this pattern in co-occurrence with mono- and polydisk strobilation in Aurelia spp. suggest that this reproductive mode may be crucial for the survival of some scyphozoan populations within the frame of a bet-hedging strategy and contribute to their long evolutionary success throughout the varied conditions of past and future oceans.


Assuntos
Oceanos e Mares , Cifozoários/fisiologia , Animais , Estágios do Ciclo de Vida , Reprodução/fisiologia , Cifozoários/anatomia & histologia , Cifozoários/crescimento & desenvolvimento
4.
Mar Environ Res ; 160: 104980, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907718

RESUMO

While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.


Assuntos
Baías , Fitoplâncton , Plâncton , Biomassa , Mar Mediterrâneo
5.
Mar Drugs ; 17(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653064

RESUMO

As people across the world live longer, chronic illness and diminished well-being are becoming major global public health challenges. Marine biotechnology may help overcome some of these challenges by developing new products and know-how derived from marine organisms. While some products from marine organisms such as microalgae, sponges, and fish have already found biotechnological applications, jellyfish have received little attention as a potential source of bioactive compounds. Nevertheless, recent studies have highlighted that scyphomedusae (Cnidaria, Scyphozoa) synthesise at least three main categories of compounds that may find biotechnological applications: collagen, fatty acids and components of crude venom. We review what is known about these compounds in scyphomedusae and their current biotechnological applications, which falls mainly into four categories of products: nutraceuticals, cosmeceuticals, biomedicals, and biomaterials. By defining the state of the art of biotechnological applications in scyphomedusae, we intend to promote the use of these bioactive compounds to increase the health and well-being of future societies.


Assuntos
Biotecnologia , Cnidários/química , Cifozoários/química , Animais , Organismos Aquáticos/química , Venenos de Cnidários , Colágeno/metabolismo , Cosmecêuticos , Ácidos Graxos/metabolismo , Humanos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA