Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(5): 1547-1558, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619923

RESUMO

Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.


Assuntos
Ritmo Circadiano , Inflamação , Insulina , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Insulina/metabolismo , Insulina/sangue , Inflamação/metabolismo , Inflamação/sangue , Masculino , Adulto , Jornada de Trabalho em Turnos , Feminino , Proteômica/métodos , Glicemia/metabolismo , Transdução de Sinais , Resistência à Insulina , Adulto Jovem
2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958510

RESUMO

High-density lipoproteins (HDLs) are promising targets for predicting and treating atherosclerotic cardiovascular disease (ASCVD), as they mediate removal of excess cholesterol from lipid-laden macrophages that accumulate in the vasculature. This functional property of HDLs, termed cholesterol efflux capacity (CEC), is inversely associated with ASCVD. HDLs are compositionally diverse, associating with >250 different proteins, but their relative contribution to CEC remains poorly understood. Our goal was to identify and define key HDL-associated proteins that modulate CEC in humans. The proteomic signature of plasma HDL was quantified in 36 individuals in the multi-ethnic population-based Dallas Heart Study (DHS) cohort that exhibited persistent extremely high (>=90th%) or extremely low CEC (<=10th%) over 15 years. Levels of apolipoprotein (Apo)A-I associated ApoC-II, ApoC-III, and ApoA-IV were differentially correlated with CEC in high (r = 0.49, 0.41, and -0.21 respectively) and low (r = -0.46, -0.41, and 0.66 respectively) CEC groups (p for heterogeneity (pHet) = 0.03, 0.04, and 0.003 respectively). Further, we observed that levels of ApoA-I with ApoC-III, complement C3 (CO3), ApoE, and plasminogen (PLMG) were inversely associated with CEC in individuals within the low CEC group (r = -0.11 to -0.25 for subspecies with these proteins vs. r = 0.58 to 0.65 for subspecies lacking these proteins; p < 0.05 for heterogeneity). These findings suggest that enrichment of specific proteins on HDLs and, thus, different subspecies of HDLs, differentially modulate the removal of cholesterol from the vasculature.


Assuntos
Aterosclerose , Proteômica , Humanos , Apolipoproteína C-III , Lipoproteínas HDL , Colesterol/metabolismo , HDL-Colesterol/metabolismo
3.
Sci Adv ; 9(35): eadi5571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647397

RESUMO

Lipoproteins in cerebrospinal fluid (CSF) of the central nervous system (CNS) resemble plasma high-density lipoproteins (HDLs), which are a compositionally and structurally diverse spectrum of nanoparticles with pleiotropic functionality. Whether CSF lipoproteins (CSF-Lps) exhibit similar heterogeneity is poorly understood because they are present at 100-fold lower concentrations than plasma HDL. To investigate the diversity of CSF-Lps, we developed a sensitive fluorescent technology to characterize lipoprotein subspecies in small volumes of human CSF. We identified 10 distinctly sized populations of CSF-Lps, most of which were larger than plasma HDL. Mass spectrometric analysis identified 303 proteins across the populations, over half of which have not been reported in plasma HDL. Computational analysis revealed that CSF-Lps are enriched in proteins important for wound healing, inflammation, immune response, and both neuron generation and development. Network analysis indicated that different subpopulations of CSF-Lps contain unique combinations of these proteins. Our study demonstrates that CSF-Lp subspecies likely exist that contain compositional signatures related to CNS health.


Assuntos
Sistema Nervoso Central , Lipopolissacarídeos , Humanos , Lipoproteínas , Lipoproteínas HDL , Corantes
4.
Math Biosci ; 360: 108983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931620

RESUMO

Computational methods are becoming commonly used in many areas of medical research. Recently, the modeling of biological mechanisms associated with disease pathophysiology have benefited from approaches such as Quantitative Systems Pharmacology (briefly QSP) and Physiologically Based Pharmacokinetics (briefly PBPK). These methodologies show the potential to enhance, if not substitute animal models. The main reasons for this success are the high accuracy and low cost. Solid mathematical foundations of such methods, such as compartmental systems and flux balance analysis, provide a good base on which to build computational tools. However, there are many choices to be made in model design, that will have a large impact on how these methods perform as we scale up the network or perturb the system to uncover the mechanisms of action of new compounds or therapy combinations. A computational pipeline is presented here that starts with available-omic data and utilizes advanced mathematical simulations to inform the modeling of a biochemical system. Specific attention is devoted to creating a modular workflow, including the mathematical rigorous tools to represent complex chemical reactions, and modeling drug action in terms of its impact on multiple pathways. An application to optimizing combination therapy for tuberculosis shows the potential of the approach.


Assuntos
Modelos Biológicos , Tuberculose , Animais , Tuberculose/tratamento farmacológico , Análise em Microsséries
5.
Front Physiol ; 12: 637999, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841175

RESUMO

Mathematical biology and pharmacology models have a long and rich history in the fields of medicine and physiology, impacting our understanding of disease mechanisms and the development of novel therapeutics. With an increased focus on the pharmacology application of system models and the advances in data science spanning mechanistic and empirical approaches, there is a significant opportunity and promise to leverage these advancements to enhance the development and application of the systems pharmacology field. In this paper, we will review milestones in the evolution of mathematical biology and pharmacology models, highlight some of the gaps and challenges in developing and applying systems pharmacology models, and provide a vision for an integrated strategy that leverages advances in adjacent fields to overcome these challenges.

6.
Bull Math Biol ; 83(2): 12, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33415476

RESUMO

One of the essential characteristics of an authentic circadian clock is that the free-running period sustains an approximately 24-hour cycle. When organisms are exposed to an external stimulus, the endogenous oscillators synchronize to the cycling environment signal in a process known as entrainment. These environmental cues perform an important role in resetting the phase and period of the circadian clock. A "generalized assumption" states that when an organism has a short period, it will experience a phase advance, while an organism with a long period experiences a phase delay. Despite widespread use, this positive relationship relating period to the phase of entrainment does not describe all known experimental data. We developed a two-step entrainment model to explain a broader range of results as well as provide more quantitative analysis. We prove existence and stability of periodic orbits and given analytical solutions of the range of entrainment, fit the phase trajectory over the entire entrainment process to data from a published study for 12 subjects in extended day cycles, i.e., longer than 24 h. Our simulations closely replicated the phase data and predicted correctly the phase of entrainment. We investigate the factors related to the rate of entrainment (ROE) and present the three-dimensional parameter spaces, illustrating the various behaviors of the phase of entrainment and ROE. Our findings can be applied to diagnostics and treatments for patients with sleep disorders caused by shift work or jet lag.


Assuntos
Ritmo Circadiano , Modelos Biológicos , Ritmo Circadiano/fisiologia , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA