Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Diabetes ; 73(9): 1426-1439, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870025

RESUMO

Glucagon is critical for the maintenance of blood glucose, however nutrient regulation of pancreatic α-cells remains poorly understood. Here, we identified a role of leucine, a well-known ß-cell fuel, in the α-cell-intrinsic regulation of glucagon release. In islet perifusion assays, physiologic concentrations of leucine strongly inhibited alanine- and arginine-stimulated glucagon secretion from human and mouse islets under hypoglycemic conditions. Mechanistically, leucine dose-dependently reduced α-cell cAMP, independently of Ca2+, ATP/ADP, or fatty acid oxidation. Leucine also reduced α-cell cAMP in islets treated with somatostatin receptor 2 antagonists or diazoxide, compounds that limit paracrine signaling from ß/δ-cells. Studies in dispersed mouse islets confirmed an α-cell-intrinsic effect. The inhibitory effect of leucine on cAMP was mimicked by glucose, α-ketoisocaproate, succinate, and the glutamate dehydrogenase activator BCH and blocked by cyanide, indicating a mechanism dependent on mitochondrial metabolism. Glucose dose-dependently reduced the impact of leucine on α-cell cAMP, indicating an overlap in function; however, leucine was still effective at suppressing glucagon secretion in the presence of elevated glucose, amino acids, and the incretin GIP. Taken together, these findings show that leucine plays an intrinsic role in limiting the α-cell secretory tone across the physiologic range of glucose levels, complementing the inhibitory paracrine actions of ß/δ-cells.


Assuntos
AMP Cíclico , Células Secretoras de Glucagon , Glucagon , Leucina , Comunicação Parácrina , Animais , Glucagon/metabolismo , AMP Cíclico/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Camundongos , Humanos , Leucina/farmacologia , Comunicação Parácrina/efeitos dos fármacos , Glucose/metabolismo , Cetoácidos/farmacologia , Masculino , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo
3.
Nat Commun ; 15(1): 5129, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879678

RESUMO

Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Células Secretoras de Glucagon , Glucagon , Camundongos Knockout , Transdução de Sinais , Glucagon/metabolismo , Animais , Células Secretoras de Glucagon/metabolismo , Camundongos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Masculino , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo
4.
Diabetes ; 73(6): 856-863, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768366

RESUMO

An agreed-upon consensus model of glucose-stimulated insulin secretion from healthy ß-cells is essential for understanding diabetes pathophysiology. Since the discovery of the KATP channel in 1984, an oxidative phosphorylation (OxPhos)-driven rise in ATP has been assumed to close KATP channels to initiate insulin secretion. This model lacks any evidence, genetic or otherwise, that mitochondria possess the bioenergetics to raise the ATP/ADP ratio to the triggering threshold, and conflicts with genetic evidence demonstrating that OxPhos is dispensable for insulin secretion. It also conflates the stoichiometric yield of OxPhos with thermodynamics, and overestimates OxPhos by failing to account for established features of ß-cell metabolism, such as leak, anaplerosis, cataplerosis, and NADPH production that subtract from the efficiency of mitochondrial ATP production. We have proposed an alternative model, based on the spatial and bioenergetic specializations of ß-cell metabolism, in which glycolysis initiates insulin secretion. The evidence for this model includes that 1) glycolysis has high control strength over insulin secretion; 2) glycolysis is active at the correct time to explain KATP channel closure; 3) plasma membrane-associated glycolytic enzymes control KATP channels; 4) pyruvate kinase has favorable bioenergetics, relative to OxPhos, for raising ATP/ADP; and 5) OxPhos stalls before membrane depolarization and increases after. Although several key experiments remain to evaluate this model, the 1984 model is based purely on circumstantial evidence and must be rescued by causal, mechanistic experiments if it is to endure.


Assuntos
Glucose , Secreção de Insulina , Células Secretoras de Insulina , Insulina , Canais KATP , Fosforilação Oxidativa , Células Secretoras de Insulina/metabolismo , Humanos , Glucose/metabolismo , Canais KATP/metabolismo , Canais KATP/genética , Secreção de Insulina/fisiologia , Animais , Insulina/metabolismo , Glicólise/fisiologia , Modelos Biológicos , Trifosfato de Adenosina/metabolismo
5.
Cell Rep ; 43(4): 114047, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607916

RESUMO

Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina , L-Lactato Desidrogenase , Ácido Láctico , Humanos , Células Secretoras de Insulina/metabolismo , Animais , L-Lactato Desidrogenase/metabolismo , Camundongos , Ácido Láctico/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , Ciclo do Ácido Cítrico , Camundongos Endogâmicos C57BL , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA