Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(1): H238-H255, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999647

RESUMO

In cardiovascular research, sex and gender have not typically been considered in research design and reporting until recently. This has resulted in clinical research findings from which not only all women, but also gender-diverse individuals have been excluded. The resulting dearth of data has led to a lack of sex- and gender-specific clinical guidelines and raises serious questions about evidence-based care. Basic research has also excluded considerations of sex. Including sex and/or gender as research variables not only has the potential to improve the health of society overall now, but it also provides a foundation of knowledge on which to build future advances. The goal of this guidelines article is to provide advice on best practices to include sex and gender considerations in study design, as well as data collection, analysis, and interpretation to optimally establish rigor and reproducibility needed to inform clinical decision-making and improve outcomes. In cardiovascular physiology, incorporating sex and gender is a necessary component when optimally designing and executing research plans. The guidelines serve as the first guidance on how to include sex and gender in cardiovascular research. We provide here a beginning path toward achieving this goal and improve the ability of the research community to interpret results through a sex and gender lens to enable comparison across studies and laboratories, resulting in better health for all.


Assuntos
Pesquisa Biomédica , Cardiologia , Caracteres Sexuais , Feminino , Humanos , Masculino , Sistema Cardiovascular
2.
JACC Basic Transl Sci ; 8(10): 1379-1388, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094686

RESUMO

Ligands for the serotonin 2B receptor (5-HT2B) have shown potential to treat pulmonary arterial hypertension in preclinical models but cannot be used in humans because of predicted off-target neurological effects. The aim of this study was to develop novel systemically restricted compounds targeting 5-HT2B. Here, we show that mice treated with VU6047534 had decreased RVSP compared with control treatment in both the prevention and intervention studies using Sugen-hypoxia. VU6047534 is a novel 5-HT2B partial agonist that is peripherally restricted and able to both prevent and treat Sugen-hypoxia-induced pulmonary arterial hypertension. We have synthesized and characterized a structurally novel series of 5-HT2B ligands with high potency and selectivity for the 5-HT2B receptor subtype. Next-generation 5-HT2B ligands with similar characteristics, and predicted to be systemically restricted in humans, are currently advancing to investigational new drug-enabling studies.

3.
J Med Chem ; 66(16): 11027-11039, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37584406

RESUMO

The cardiotoxicity associated with des-ethyl-dexfenfluramine (norDF) and related agonists of the serotonin receptor 2B (5-HT2B) has solidified the receptor's place as an "antitarget" in drug discovery. Conversely, a growing body of evidence has highlighted the utility of 5-HT2B antagonists for the treatment of pulmonary arterial hypertension (PAH), valvular heart disease (VHD), and related cardiopathies. In this Perspective, we summarize the link between the clinical failure of fenfluramine-phentermine (fen-phen) and the subsequent research on the role of 5-HT2B in disease progression, as well as the development of drug-like and receptor subtype-selective 5-HT2B antagonists. Such agents represent a promising class for the treatment of PAH and VHD, but their utility has been historically understudied due to the clinical disasters associated with 5-HT2B. Herein, it is our aim to examine the current state of 5-HT2B drug discovery, with an emphasis on the receptor's role in the central nervous system (CNS) versus the periphery.


Assuntos
Doenças das Valvas Cardíacas , Receptor 5-HT2B de Serotonina , Humanos , Serotonina , Fenfluramina , Descoberta de Drogas
5.
Assay Drug Dev Technol ; 21(3): 89-96, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930852

RESUMO

Antagonists of the serotonin receptor 2B (5-HT2B) have shown great promise as therapeutics for the treatment of pulmonary arterial hypertension, valvular heart disease, and related cardiopathies. Herein, we describe a high-throughput screen campaign that led to the identification of highly potent and selective 5-HT2B antagonists. Furthermore, selected compounds were profiled for their predicted ability to cross the blood-brain barrier. Two exemplary compounds, VU0530244 and VU0631019, were predicted to have very limited potential for brain penetration in human subjects, a critical profile for the development of 5-HT2B antagonists devoid of centrally-mediated adverse effects.


Assuntos
Receptor 5-HT2B de Serotonina , Serotonina , Humanos
6.
Am J Physiol Heart Circ Physiol ; 323(5): H1037-H1047, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240434

RESUMO

The objective of this study was to test the hypothesis that targeting sclerostin would accelerate the progression of aortic valve stenosis. Sclerostin (mouse gene, Sost) is a secreted glycoprotein that acts as a potent regulator of bone remodeling. Antibody therapy targeting sclerostin is approved for osteoporosis but results from a stage III clinical trial showed multiple off-target cardiovascular effects. Wild-type (WT, Sost+/+) and Sost-gene knockout-expression (Null, Sost-/-) mice were generated and maintained to 12 mo of age on a high-cholesterol diet to induce aortic valve stenosis. Mice were examined by echocardiography, histology, and RNAseq. Immortalized valve interstitial cells were developed from each genotype for in vitro studies. Null mice developed a bone overgrowth phenotype, similar to patients with sclerosteosis. Surprisingly, however, WT mice developed hemodynamic signs of aortic valve stenosis, whereas Null mice were unchanged. WT mice had thicker aortic valve leaflets and higher amounts of α-smooth muscle actin, a marker myofibroblast activation and dystrophic calcification, with very little evidence of Runx2 expression, a marker of osteogenic calcification. RNAseq analysis of aortic roots indicated the HOX family of transcription factors was significantly upregulated in Null mice, and valve interstitial cells from Null animals were enriched with Hoxa1, Hoxb2, and Hoxd3 subtypes with downregulated Hoxa7. In addition, Null valve interstitial cells were shown to be less contractile than their WT counterparts. Contrary to our hypothesis, sclerostin targeting prevented hallmarks of aortic valve stenosis and indicates that targeted antibody treatments for osteoporosis may be beneficial for these patients regarding aortic stenosis.NEW & NOTEWORTHY We have found that genetic ablation of the Sost gene (protein: sclerostin) prevents aortic valve stenosis in aged, Western diet mice. This is a new role for sclerostin in the cardiovascular system. To the knowledge of the authors, this is one of the first studies directly manipulating sclerostin in a cardiovascular disease model and the first to specifically study the aortic valve. We also provide a potential new role for Hox genes in cardiovascular disease, noting pan-Hox upregulation in the aortic roots of sclerostin genetic knockouts. The role of Hox genes in postnatal cardiovascular health and disease is another burgeoning field of study to which this article contributes.


Assuntos
Estenose da Valva Aórtica , Calcinose , Osteoporose , Camundongos , Animais , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/prevenção & controle , Estenose da Valva Aórtica/diagnóstico , Valva Aórtica/metabolismo , Camundongos Knockout , Calcinose/genética , Calcinose/prevenção & controle , Osteoporose/metabolismo , Osteoporose/patologia
8.
Am J Physiol Heart Circ Physiol ; 322(6): H1080-H1085, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486477

RESUMO

Postmenopausal women tend to have worse cardiovascular outcomes in a manner that is associated with osteoporosis severity. In this study, we performed the first evaluation of the left ventricle and aortic valve phenotype of ovariectomized mice aged on Western diet to 1 yr. Disease was monitored in vivo using echocardiography and dual X-ray absorptiometry imaging and ex vivo using quantitative histological and immunostaining analysis. Mice had decreased bone mineral density in response to ovariectomy and increased fat mass in response to Western diet. Ovariectomized mice had a significantly increased left ventricle mass compared with control animals, absent of fibrosis. There was a slight increase in aortic valve peak velocity but no change in mean pressure gradient across the valve in the ovariectomy group. There was no evidence of leaflet hypertrophy, fibrosis, or calcification. This model of ovariectomy may present a novel method of studying left ventricle hypertrophy in female populations but does not have a phenotype for the study of aortic stenosis. This is particularly useful as it does not require genetic manipulation or drug treatment and more faithfully mimics aging, high-cholesterol diet, and postmenopausal osteoporosis that many female patients experience potentially resulting in a more translatable disease model.NEW & NOTEWORTHY This article uses in vivo and ex vivo analysis to track the development of osteoporosis and left heart cardiovascular disease in an aged, high-cholesterol diet, mouse ovariectomy model. Mice develop early left ventricle hypertrophy without concurrent fibrosis or aortic valve stenosis. These findings allow for a new model of the study of left ventricle hypertrophy in postmenopausal osteoporosis that more closely mimics the natural progression of disease in female patients.


Assuntos
Estenose da Valva Aórtica , Osteoporose Pós-Menopausa , Osteoporose , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/etiologia , Colesterol , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/etiologia , Camundongos , Osteoporose/complicações , Osteoporose/etiologia , Osteoporose Pós-Menopausa/complicações , Osteoporose Pós-Menopausa/patologia , Ovariectomia
9.
Am J Physiol Heart Circ Physiol ; 322(5): H857-H866, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333120

RESUMO

Pressure overload of the heart is characterized by concentric hypertrophy and interstitial fibrosis. Cardiac fibroblasts (CFs) in the ventricular wall become activated during injury and synthesize and compact the extracellular matrix, which causes interstitial fibrosis and stiffening of the ventricular heart walls. Talin1 (Tln1) and Talin2 (Tln2) are mechanosensitive proteins that participate in focal adhesion transmission of signals from the extracellular environment to the actin cytoskeleton of CFs. The aim of the present study was to determine whether the removal of Tln1 and Tln2 from CFs would reduce interstitial fibrosis and cardiac hypertrophy. Twelve-week-old male and female Tln2-null (Tln2-/-) and Tln2-null, CF-specific Tln1 knockout (Tln2-/-;Tln1CF-/-) mice were given angiotensin-II (ANG II) (1.5 mg/kg/day) or saline through osmotic pumps for 8 wk. Cardiomyocyte area and measures of heart thickness were increased in the male ANG II-infused Tln2-/-;Tln1CF-/- mice, whereas there was no increase in interstitial fibrosis. Systolic blood pressure was increased in the female Tln2-/-;Tln1CF-/- mice after ANG II infusion compared with the Tln2-/- mice. However, there was no increase in cardiac hypertrophy in the Tln2-/-;Tln1CF-/- mice, which was seen in the Tln2-/- mice. Collectively, these data indicate that in male mice, the absence of Tln1 and Tln2 in CFs leads to cardiomyocyte hypertrophy in response to ANG II, whereas it results in a hypertrophy-resistant phenotype in female mice. These findings have important implications for the role of mechanosensitive proteins in CFs and their impact on cardiomyocyte function in the pathogenesis of hypertension and cardiac hypertrophy.NEW & NOTEWORTHY The role of talins has been previously studied in cardiomyocytes; however, these mechanotransductive proteins that are members of the focal adhesion complex have not been examined in cardiac fibroblasts previously. We hypothesized that loss of talins in cardiac fibroblasts would reduce interstitial fibrosis in the heart with a pressure overload model. However, we found that although loss of talins did not alter fibrosis, it did result in cardiomyocyte and ventricular hypertrophy.


Assuntos
Miócitos Cardíacos , Talina , Angiotensina II/farmacologia , Animais , Cardiomegalia/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Masculino , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Talina/genética , Talina/metabolismo
10.
J Am Coll Cardiol ; 78(23): 2354-2376, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34857095

RESUMO

Despite numerous promising therapeutic targets, there are no proven medical treatments for calcific aortic stenosis (AS). Multiple stakeholders need to come together and several scientific, operational, and trial design challenges must be addressed to capitalize on the recent and emerging mechanistic insights into this prevalent heart valve disease. This review briefly discusses the pathobiology and most promising pharmacologic targets, screening, diagnosis and progression of AS, identification of subgroups that should be targeted in clinical trials, and the need to elicit the patient voice earlier rather than later in clinical trial design and implementation. Potential trial end points and tools for assessment and approaches to implementation and design of clinical trials are reviewed. The efficiencies and advantages offered by a clinical trial network and platform trial approach are highlighted. The objective is to provide practical guidance that will facilitate a series of trials to identify effective medical therapies for AS resulting in expansion of therapeutic options to complement mechanical solutions for late-stage disease.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Valva Aórtica/patologia , Calcinose/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/etiologia , Calcinose/complicações , Progressão da Doença , Humanos
11.
Am J Physiol Heart Circ Physiol ; 321(4): H756-H769, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506228

RESUMO

Inflammation caused by infiltrating macrophages and T cells promotes plaque growth in atherosclerosis. Cadherin-11 (CDH11) is a cell-cell adhesion protein implicated in several fibrotic and inflammatory diseases. Much of the research on CDH11 concerns its role in fibroblasts, although its expression in immune cells has been noted as well. The objective of this study was to assess the effect of CDH11 on the atherosclerotic immune response. In vivo studies of atherosclerosis indicated an increase in Cdh11 in plaque tissue. However, global loss of Cdh11 resulted in increased atherosclerosis and inflammation. It also altered the immune response in circulating leukocytes, decreasing myeloid cell populations and increasing T-cell populations, suggesting possible impaired myeloid migration. Bone marrow transplants from Cdh11-deficient mice resulted in similar immune cell profiles. In vitro examination of Cdh11-/- macrophages revealed reduced migration, despite upregulation of a number of genes related to locomotion. Flow cytometry revealed an increase in CD3+ and CD4+ helper T-cell populations in the blood of both the global Cdh11 loss and the bone marrow transplant animals, possibly resulting from increased expression by Cdh11-/- macrophages of major histocompatibility complex class II molecule genes, which bind to CD4+ T cells for coordinated activation. CDH11 fundamentally alters the immune response in atherosclerosis, resulting in part from impaired macrophage migration and altered macrophage-induced T-cell activation.NEW & NOTEWORTHY Cadherin-11 is well known to contribute to inflammatory and fibrotic disease. Here, we examined its role in atherosclerosis progression, which is predominantly an inflammatory process. We found that while cadherin-11 is associated with plaque progression, global loss of cadherin-11 exacerbated the disease phenotype. Moreover, loss of cadherin-11 in bone marrow-derived immune cells resulted in impaired macrophage migration and an unexplained increase in circulating helper T cells, presumably due to altered macrophage function without cadherin-11.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Caderinas/deficiência , Quimiotaxia , Macrófagos/metabolismo , Placa Aterosclerótica , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Transplante de Medula Óssea , Caderinas/genética , Modelos Animais de Doenças , Feminino , Ativação Linfocitária , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/imunologia
13.
Nature ; 593(7858): 282-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828302

RESUMO

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Nutrientes/metabolismo , Microambiente Tumoral , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia
14.
J Biomech ; 119: 110253, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636459

RESUMO

Calcific aortic valve disease (CAVD) is a condition causing stiffening of the aortic valve, impeding cardiac function and resulting in significant morbidity worldwide. CAVD is thought to be driven by the persistent activation of the predominant cell type in the valve, aortic valve interstitial cells (AVICs), into myofibroblasts, resulting in subsequent calcification and stenosis of the valve. Although much of the research into CAVD focuses on AVICs, the aortic valve endothelial cells (AVECs) have been shown to regulate AVICs and maintain tissue homeostasis. Exposed to distinct flow patterns during the cardiac cycle, the AVECs lining either side of the valve demonstrate crucial differences which could contribute to the preferential formation of calcific nodules on the aorta-facing (fibrosa) side of the valve. Cadherin-11 (CDH11) is a cell-cell adhesion protein which has been previously associated with AVIC myofibroblast activation, nodule formation, and CAVD in mice. In this study, we investigated the role of CDH11 in AVECs and examined side-specific differences. The aorta-facing or fibrosa endothelial cells (fibAVECs) express higher levels of CDH11 than the ventricle-facing or ventricularis endothelial cells (venAVECs). This increase in expression corresponds with increased contraction of a free-floating collagen gel compared to venAVECs. Additionally, co-culture of fibAVECs with AVICs demonstrated decreased contraction compared to an AVIC + AVIC control, but increased contraction compared to the venAVECs co-culture. This aligns with the known preferential formation of calcific nodules on the fibrosa. These results together indicate a potential role for CDH11 expression by AVECs in regulating AVIC contraction and subsequent calcification.


Assuntos
Estenose da Valva Aórtica , Caderinas , Calcinose , Mecanotransdução Celular , Animais , Valva Aórtica , Células Cultivadas , Células Endoteliais , Camundongos
15.
J Cell Sci ; 134(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33526716

RESUMO

Circulating tumor cells (CTCs) are exposed to fluid shear stress (FSS) of greater than 1000 dyn/cm2 (100 Pa) in circulation. Normally, CTCs that are exposed to FSS of this magnitude die. However, some CTCs develop resistance to this FSS, allowing them to colonize distant organs. We explored how prostate CTCs can resist cell death in response to forces of this magnitude. The DU145, PC3 and LNCaP human prostate cancer cell lines were used to represent cells of different metastatic origins. The cell lines were briefly treated with an average FSS of 3950 dyn/cm2 (395 Pa) using a 30 G needle and a syringe pump. DU145 cells had no change in cell viability, PC3 cells had some cell death and LNCaP cells exhibited significant cell death. These cell death responses correlated with increased cell membrane damage, less efficient membrane repair and increased stiffness. Additionally, FSS treatment prevented the LNCaP FSS-sensitive cell line from forming a growing tumor in vivo This suggests that these properties play a role in FSS resistance and could represent potential targets for disrupting blood-borne metastasis.


Assuntos
Células Neoplásicas Circulantes , Neoplasias da Próstata , Morte Celular , Linhagem Celular Tumoral , Humanos , Masculino , Estresse Mecânico
16.
Circulation ; 143(13): 1317-1330, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33474971

RESUMO

BACKGROUND: Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI. Serotonin 2B receptor (5-HT2B) signaling has been shown to be harmful in a variety of cardiopulmonary pathologies and could play an important role in mediating scar formation after MI. METHODS: We used 2 pharmacological antagonists to explore the effect of 5-HT2B inhibition on outcomes after MI and characterized the histological and microstructural changes involved in tissue remodeling. Inducible 5-HT2B ablation driven by Tcf21MCM and PostnMCM was used to evaluate resident cardiac fibroblast- and myofibroblast-specific contributions of 5-HT2B, respectively. RNA sequencing was used to motivate subsequent in vitro analyses to explore cardiac fibroblast phenotype. RESULTS: 5-HT2B antagonism preserved cardiac structure and function by facilitating a less fibrotic scar, indicated by decreased scar thickness and decreased border zone area. 5-HT2B antagonism resulted in collagen fiber redistribution to thinner collagen fibers that were more anisotropic, enhancing left ventricular contractility, whereas fibrotic tissue stiffness was decreased, limiting the hypertrophic response of uninjured cardiomyocytes. Using a tamoxifen-inducible Cre, we ablated 5-HT2B from Tcf21-lineage resident cardiac fibroblasts and saw similar improvements to the pharmacological approach. Tamoxifen-inducible Cre-mediated ablation of 5-HT2B after onset of injury in Postn-lineage myofibroblasts also improved cardiac outcomes. RNA sequencing and subsequent in vitro analyses corroborate a decrease in fibroblast proliferation, migration, and remodeling capabilities through alterations in Dnajb4 expression and Src phosphorylation. CONCLUSIONS: Together, our findings illustrate that 5-HT2B expression in either cardiac fibroblasts or activated myofibroblasts directly contributes to excessive scar formation, resulting in adverse remodeling and impaired cardiac function after MI.


Assuntos
Fibrose/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Camundongos Knockout , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais
18.
Cell Signal ; 78: 109876, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285242

RESUMO

Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.


Assuntos
Caderinas/metabolismo , Cardiopatias/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Animais , Fibrose , Cardiopatias/patologia , Humanos , Miocárdio/patologia , Miofibroblastos/patologia
19.
PLoS One ; 15(11): e0238407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237915

RESUMO

Calcific aortic valve disease (CAVD) is a deadly disease that is rising in prevalence due to population aging. While the disease is complex and poorly understood, one well-documented driver of valvulopathy is serotonin agonism. Both serotonin overexpression, as seen with carcinoid tumors and drug-related agonism, such as with Fenfluramine use, are linked with various diseases of the valves. Thus, the objective of this study was to determine if genetic ablation or pharmacological antagonism of the 5-HT2B serotonin receptor (gene: Htr2b) could improve the hemodynamic and histological progression of calcific aortic valve disease. Htr2b mutant mice were crossed with Notch1+/- mice, an established small animal model of CAVD, to determine if genetic ablation affects CAVD progression. To assess the effect of pharmacological inhibition on CAVD progression, Notch1+/- mice were treated with the 5-HT2B receptor antagonist SB204741. Mice were analyzed using echocardiography, histology, immunofluorescence, and real-time quantitative polymerase chain reaction. Htr2b mutant mice showed lower aortic valve peak velocity and mean pressure gradient-classical hemodynamic indicators of aortic valve stenosis-without concurrent left ventricle change. 5-HT2B receptor antagonism, however, did not affect hemodynamic progression. Leaflet thickness, collagen density, and CAVD-associated transcriptional markers were not significantly different in any group. This study reveals that genetic ablation of Htr2b attenuates hemodynamic development of CAVD in the Notch1+/- mice, but pharmacological antagonism may require high doses or long-term treatment to slow progression.


Assuntos
Valva Aórtica/patologia , Colesterol/metabolismo , Hemodinâmica/genética , Receptor Notch1/genética , Receptor 5-HT2B de Serotonina/genética , Animais , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose/genética , Calcinose/patologia , Dieta , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia/métodos , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Hemodinâmica/fisiologia , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Hiperlipidemias/genética , Hiperlipidemias/patologia , Camundongos
20.
Cytoskeleton (Hoboken) ; 77(9): 342-350, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32885903

RESUMO

The coordinated generation of mechanical forces by cardiac myocytes is required for proper heart function. Myofibrils are the functional contractile units of force production within individual cardiac myocytes. At the molecular level, myosin motors form cross-bridges with actin filaments and use ATP to convert chemical energy into mechanical forces. The energetic efficiency of the cross-bridge cycle is influenced by the viscous damping of myofibril contraction. The viscoelastic response of myofibrils is an emergent property of their individual mechanical components. Previous studies have implicated titin-actin interactions, cell-ECM adhesion, and microtubules as regulators of the viscoelastic response of myofibrils. Here we probed the viscoelastic response of myofibrils using laser-assisted dissection. As a proof-of-concept, we found actomyosin contractility was required to endow myofibrils with their viscoelastic response, with blebbistatin treatment resulting in decreased myofibril tension and viscous damping. Focal adhesion kinase (FAK) is a key regulator of cell-ECM adhesion, microtubule stability, and myofibril assembly. We found inhibition of FAK signaling altered the viscoelastic properties of myofibrils. Specifically, inhibition of FAK resulted in increased viscous damping of myofibril retraction following laser ablation. This damping was not associated with acute changes in the electrophysiological properties of cardiac myocytes. These results implicate FAK as a regulator of mechanical properties of myofibrils.


Assuntos
Adesões Focais/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Humanos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA