Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(8): e70800, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940643

RESUMO

BACKGROUND: Culicoides biting midges (Diptera: Ceratopogonidae) are the biological vectors of globally significant arboviruses of livestock including bluetongue virus (BTV), African horse sickness virus (AHSV) and the recently emerging Schmallenberg virus (SBV). From 2006-2009 outbreaks of BTV in northern Europe inflicted major disruption and economic losses to farmers and several attempts were made to implicate Palaearctic Culicoides species as vectors. Results from these studies were difficult to interpret as they used semi-quantitative RT-PCR (sqPCR) assays as the major diagnostic tool, a technique that had not been validated for use in this role. In this study we validate the use of these assays by carrying out time-series detection of BTV RNA in two colony species of Culicoides and compare the results with the more traditional isolation of infectious BTV on cell culture. METHODOLOGY/PRINCIPAL FINDINGS: A BTV serotype 1 strain mixed with horse blood was fed to several hundred individuals of Culicoides sonorensis (Wirth & Jones) and C. nubeculosus (Mg.) using a membrane-based assay and replete individuals were then incubated at 25°C. At daily intervals 25 Culicoides of each species were removed from incubation, homogenised and BTV quantified in each individual using sqPCR (Cq values) and virus isolation on a KC-C. sonorensis embryonic cell line, followed by antigen enzyme-linked immunosorbent assay (ELISA). In addition, comparisons were also drawn between the results obtained with whole C. sonorensis and with individually dissected individuals to determine the level of BTV dissemination. CONCLUSIONS/SIGNIFICANCE: Cq values generated from time-series infection experiments in both C. sonorensis and C. nubeculosus confirmed previous studies that relied upon the isolation and detection of infectious BTV. Implications on the testing of field-collected Culicoides as potential virus vectors by PCR assays and the use of such assays as front-line tools for use in diagnostic laboratories in this role are discussed.


Assuntos
Vírus Bluetongue/genética , Bluetongue/transmissão , Ceratopogonidae/virologia , Insetos Vetores/virologia , Animais , Bluetongue/virologia , Vírus Bluetongue/isolamento & purificação , Vírus Bluetongue/fisiologia , Cavalos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral , Replicação Viral
2.
Vet Res ; 43: 40, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22546071

RESUMO

Bluetongue virus (BTV) is a double stranded (ds) RNA virus (genus Orbivirus; family Reoviridae), which is considered capable of infecting all species of domestic and wild ruminants, although clinical signs are seen mostly in sheep. BTV is arthropod-borne ("arbovirus") and able to productively infect and replicate in many different cell types of both insects and mammalian hosts. Although the organ and cellular tropism of BTV in ruminants has been the subject of several studies, many aspects of its pathogenesis are still poorly understood, partly because of inherent problems in distinguishing between "virus replication" and "virus presence".BTV replication and organ tropism were studied in a wide range of infected sheep tissues, by immuno-fluorescence-labeling of non-structural or structural proteins (NS2 or VP7 and core proteins, respectively) using confocal microscopy to distinguish between virus presence and replication. These results are compared to gross and microscopic pathological findings in selected organs from infected sheep. Replication was demonstrated in two major cell types: vascular endothelial cells, and agranular leukocytes which morphologically resemble lymphocytes, monocytes/macrophages and/or dendritic cells. Two organs (the skin and tonsils) were shown to support relatively high levels of BTV replication, although they have not previously been proposed as important replication sites during BTV infection. The high level of BTV replication in the skin is thought to be of major significance for the pathogenesis and transmission of BTV (via biting insects) and a refinement of our current model of BTV pathogenesis is discussed.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/virologia , Ceratopogonidae/fisiologia , Pele/virologia , Animais , Vírus Bluetongue/genética , Vírus Bluetongue/isolamento & purificação , Comportamento Alimentar , Cadeia Alimentar , Imuno-Histoquímica/veterinária , Inflamação/veterinária , Inflamação/virologia , Microscopia Confocal/veterinária , Especificidade de Órgãos , Ovinos , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA