Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2318596121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621142

RESUMO

While there is increasing recognition that social processes in cities like gentrification have ecological consequences, we lack nuanced understanding of the ways gentrification affects urban biodiversity. We analyzed a large camera trap dataset of mammals (>500 g) to evaluate how gentrification impacts species richness and community composition across 23 US cities. After controlling for the negative effect of impervious cover, gentrified parts of cities had the highest mammal species richness. Change in community composition was associated with gentrification in a few cities, which were mostly located along the West Coast. At the species level, roughly half (11 of 21 mammals) had higher occupancy in gentrified parts of a city, especially when impervious cover was low. Our results indicate that the impacts of gentrification extend to nonhuman animals, which provides further evidence that some aspects of nature in cities, such as wildlife, are chronically inaccessible to marginalized human populations.


Assuntos
Biodiversidade , Segregação Residencial , Animais , Humanos , Cidades , Mamíferos , Animais Selvagens , Ecossistema
2.
PLoS One ; 5(10)2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20957208

RESUMO

Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647-736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this region of western Amazonia appears to support the most diverse ant fauna yet recorded.


Assuntos
Formigas/classificação , Animais , Demografia , Equador , Especificidade da Espécie
3.
Naturwissenschaften ; 94(9): 725-31, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17457552

RESUMO

Ants are abundant, diverse, and ecologically dominant in tropical forests. Subterranean ants in particular are thought to have a significant environmental impact, although difficulties associated with collecting ants underground and examining their ecology and behavior have limited research. In this paper, we present the results of a study of subterranean ant diversity in Amazonian Ecuador that employs a novel probe to facilitate the discovery of species inhabiting the soil horizon. Forty-seven species of ants in 19 genera, including new and apparently rare species, were collected in probes. Approximately 19% of the species collected at different depths in the soil were unique to probe samples. Analysis of similarity (ANOSIM) results showed that the species composition of ants collected with the probe was significantly different from samples collected using other techniques. Additionally, ANOSIM computations indicated the species assemblage of ants collected 12.5 cm below the surface was significantly different from those found at 25, 37.5, and 50 cm. Ant diversity and species accumulation rates decreased with increasing depth. There were no species unique to the lowest depths, suggesting that subterranean ants may not be distributed deep in the soil in Amazonia due to the high water table. The technique we describe could be used to gain new insights into the distribution and biology of subterranean ant species and other members of the species-rich soil invertebrate macrofauna.


Assuntos
Biodiversidade , Plantas/classificação , Solo/análise , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA