Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367574

RESUMO

Grapevine trunk diseases (GTDs) are currently among the most important health challenges for viticulture in the world. Esca, Botryosphaeria dieback, and Eutypa dieback are the most current GTDs caused by fungi in mature vineyards. Their incidence has increased over the last two decades, mainly after the ban of sodium arsenate, carbendazim, and benomyl in the early 2000s. Since then, considerable efforts have been made to find alternative approaches to manage these diseases and limit their propagation. Biocontrol is a sustainable approach to fight against GTD-associated fungi and several microbiological control agents have been tested against at least one of the pathogens involved in these diseases. In this review, we provide an overview of the pathogens responsible, the various potential biocontrol microorganisms selected and used, and their origins, mechanisms of action, and efficiency in various experiments carried out in vitro, in greenhouses, and/or in vineyards. Lastly, we discuss the advantages and limitations of these approaches to protect grapevines against GTDs, as well as the future perspectives for their improvement.

2.
J Fungi (Basel) ; 9(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37233222

RESUMO

Two major diseases that affect grapevine leaves and berries are controlled by the oomycete Pythium oligandrum. As the efficacy of biocontrol agents strongly depends on factors such as the trophic behaviors of pathogens and cultivar susceptibility, a two-disease approach was implemented to evaluate the activity of P. oligandrum against Botrytis cinerea (the necrotrophic fungus of gray mold) and Plasmopara viticola (the biotrophic oomycete of downy mildew) on two grapevine cultivars with different susceptibilities to these two pathogens. The results show that grapevine root inoculation with P. oligandrum significantly reduced P. viticola and B. cinerea infection on the leaves of the two cultivars, but with differences. This was observed when the relative expression of 10 genes was measured in response to each pathogen, and could be attributed to their lifestyles, i.e., biotrophic or necrotrophic, which are related to the activation of specific metabolic pathways of the plant. In response to P. viticola infection, genes from the jasmonate and ethylene pathways were mainly induced, whereas for B. cinerea, the genes induced were those of the ethylene-jasmonate pathway. The different levels of defense against B. cinerea and P. viticola could also explain the difference in cultivar susceptibility to these pathogens.

3.
Front Microbiol ; 12: 690942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690943

RESUMO

Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.

4.
Front Microbiol ; 11: 1501, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849320

RESUMO

Enterococcus faecalis has controversial status due to its emerging role in nosocomial infections, while some strains with beneficial effects are used as probiotics and starter cultures in dairy industry. These bacteria can be found as resident or transient germs in the gut or on skin, where they are continually exposed to various eukaryotic molecules. In this context, the aim of our work was to evaluate the effect of the catecholamine stress hormones, epinephrine (Epi), and norepinephrine (NE) on some Enterococcus strains. Four E. faecalis strains were included in this study: E. faecalis MMH594 and E. faecalis V583, pathogenic strains of clinical origin, E. faecalis Symbioflor 1 clone DSM 16431, a pharmaceutical probiotic, and E. faecalis OB15, a probiotic strain previously isolated from Tunisian rigouta (Baccouri et al., 2019). Epi was found to modulate the formation of biofilm (biovolume and thickness) in E. faecalis, whether pathogens or probiotics. NE had less effect on biofilm formation of these bacteria. We also investigated the effect of Epi and NE on adhesion of E. faecalis to eukaryotic cells as it is the first step of colonization of the host. Epi was found to significantly enhance the adhesion of MMH594 and OB15 to Caco-2/TC7 intestinal cells and HaCaT keratinocyte cells, whereas NE significantly increased the adhesion of V583 and Symbioflor 1 DSM 16431 to Caco-2/TC7 cells, the adhesion of MMH594, Symbioflor 1 DSM 16431, and OB15 to HaCaT cells. Analysis of a putative adrenergic sensor of Epi/NE in E. faecalis, compared to QseC, the Escherichia coli adrenergic receptor, allowed the identification of VicK as the nearest protein to QseC with 29% identity and 46% similarity values. Structure modeling and molecular docking of VicK corroborated the hypothesis of possible interactions of this putative adrenergic sensor with Epi and NE, with binding energies of -4.08 and -4.49 kcal/mol, respectively. In conclusion, this study showed for the first time that stress hormones could increase biofilm formation and adhesion to eukaryotic cells in E. faecalis. Future experiments will aim to confirm by in vivo studies the role of VicK as adrenergic sensor in E. faecalis probiotic and pathogen strains. This may help to develop new strategies of antagonism/competition in the gut or skin ecological niches, and to prevent the colonization by opportunistic pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA