Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(12): 8967-8987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37138143

RESUMO

Soil plays a key role in ecosphere and air quality regulation. Obsolete environmental technologies lead to soil quality loss, air, water, and land systems pollution. Pedosphere and plants are intertwined with the air quality. Ionized O2 is capable to intensify atmosphere turbulence, providing particulate matter (PM2.5) coalescence and dry deposition. Addressing environmental quality, a Biogeosystem Technique (BGT*) heuristic transcendental (nonstandard and not direct imitation of nature) methodology has been developed. A BGT* main focus is an enrichment of Earth's biogeochemical cycles through land use and air cleaning. An intra-soil processing, which provides the soil multilevel architecture, is one of the BGT* ingredients. A next BGT* implementation is intra-soil pulse continuously discrete watering for optimal soil water regime and freshwater saving up to 10-20 times. The BGT* comprises intra-soil dispersed environmentally safe recycling of the PM sediments, heavy metals (HMs) and other pollutants, controlling biofilm-mediated microbial community interactions in the soil. This provides abundant biogeochemical cycle formation and better functioning of the humic substances, biological preparation, and microbial biofilms as a soil-biological starter, ensuring priority plants and trees nutrition, growth and resistance to phytopathogens. A higher underground and aboveground soil biological product increases a reversible C biological sequestration from the atmosphere. An additional light O2 ions photosynthetic production ensures a PM2.5 and PM0.1 coalescence and strengthens an intra-soil transformation of PM sediments into nutrients and improves atmosphere quality. The BGT* provides PM and HMs intra-soil passivation, increases soil biological productivity, stabilizes a climate system of the earth and promotes a green circular economy.


Assuntos
Poluição do Ar , Metais Pesados , Solo , Poluição do Ar/análise , Metais Pesados/análise , Material Particulado/análise , Plantas , Água
2.
ACS Omega ; 5(51): 33214-33224, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403283

RESUMO

The origin of organic matter, its spread, scattering, and functioning are influenced by the physical structure of liquid or dispersed media of organic matter. Refractive indices of fodder yeast grown on paraffin oil (paprin) and natural gas (gaprin) as well as Lycoperdon spore and organelles were measured by laser phase microscopy. The scattering matrices of aqueous suspensions of paprin, gaprin, and Lycoperdon spores were measured using a laser polarimeter with the scattering angle ranging from 20 to 150°. The experimentally measured scattering matrices have been approximated by the weighted sum of theoretically calculated scattering matrices using the T-matrix code developed by Mishchenko. Most of the particle radii in the filtered fraction of paprin and gaprin were within the range of about 0.05-0.12 µm. Particle radii of the Lycoperdon spore suspension were within the range of 0.4-2.4 µm, which corresponded to both whole spores and their separate organelles. A possibility of identifying a suspension by its scattering matrices was shown for a small difference in the real parts of the refractive index in the example of paprin and gaprin. The measurements of the light scattering matrix showed that for a small size parameter of about 1, the identification of paprin and gaprin can be based only on a difference in the particle shape. Refractive index difference is manifested for the size parameter values higher than 3. An example of a suspension consisting of micron-sized spores and their submicron organelles shows high sensitivity of the scattering matrix to the composition of the dispersed material. The presented data and models help to extrapolate the results of the light scattering matrix study to a vast spectrum of media of organic matter origin and functioning. This study focused on the Biogeosystem Technique (BGT*) transcendental methodology to manage soil as an arena of biodegradation and organic synthesis. A BGT*-based robotic system for intra-soil pulse continuous-discrete water and matter supply directly into the dispersed-aggregated physical structure of the soil media was developed. The system enables transformation of soil into a stable highly productive organic chemical bioreactor for better controlled nanoparticle biomolecular interactions and adsorption by biological and mineral media. The scattering matrix measurement unit is supposed to be used in the robotic system as a diagnostic tool for the dispersion composition of soil organic components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA