Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 79(3): 530-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889180

RESUMO

The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens.


Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Transcriptoma/genética , Bryopsida/fisiologia , Perfilação da Expressão Gênica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
2.
Plant Methods ; 9(1): 33, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23958387

RESUMO

BACKGROUND: It is generally accepted that controlled vocabularies are necessary to systematically integrate data from various sources. During the last decade, several plant ontologies have been developed, some of which are community specific or were developed for a particular purpose. In most cases, the practical application of these ontologies has been limited to systematically storing experimental data. Due to technical constraints, complex data structures and term redundancies, it has been difficult to apply them directly into analysis tools. RESULTS: Here, we describe a simplified and cross-species compatible set of controlled vocabularies for plant anatomy, focussing mainly on monocotypledonous and dicotyledonous crop and model plants. Their content was designed primarily for their direct use in graphical visualization tools. Specifically, we created annotation vocabularies that can be understood by non-specialists, are minimally redundant, simply structured, have low tree depth, and we tested them practically in the frame of Genevestigator. CONCLUSIONS: The application of the proposed ontologies enabled the aggregation of data from hundreds of experiments to visualize gene expression across tissue types. It also facilitated the comparison of expression across species. The described controlled vocabularies are maintained by a dedicated curation team and are available upon request.

3.
Plant Cell ; 24(7): 3026-39, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22797473

RESUMO

Enhanced levels of singlet oxygen ((1)O(2)) in chloroplasts trigger programmed cell death. The impact of (1)O(2) production in chloroplasts was monitored first in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that accumulates (1)O(2) upon a dark/light shift. The onset of (1)O(2) production is rapidly followed by a loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell. Inactivation of the two plastid proteins EXECUTER (EX1) and EX2 in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than (1)O(2) directly. In flu seedlings, (1)O(2)-mediated cell death signaling operates as a default pathway that results in seedlings committing suicide. By contrast, EX-dependent signaling in the wild type induces the formation of microlesions without decreasing the viability of seedlings. (1)O(2)-mediated and EX-dependent loss of plastid integrity and cell death in these plants occurs only in cells containing fully developed chloroplasts. Our findings support an as yet unreported signaling role of (1)O(2) in the wild type exposed to mild light stress that invokes photoinhibition of photosystem II without causing photooxidative damage of the plant.


Assuntos
Apoptose/fisiologia , Arabidopsis/fisiologia , Cloroplastos/fisiologia , Transdução de Sinais/fisiologia , Oxigênio Singlete/metabolismo , Apoptose/efeitos da radiação , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Escuridão , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Complexo de Proteína do Fotossistema II/fisiologia , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Vacúolos/metabolismo , Vacúolos/efeitos da radiação
4.
FEBS Lett ; 586(3): 211-6, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22212719

RESUMO

Regulation of tetrapyrrole biosynthesis in higher plants has been attributed to negative feedback control. Two effectors of feedback inhibition have been identified, heme and the FLU protein. Inhibition by heme implicates the Fe-branch via regulation of the initial step of tetrapyrrole synthesis. In the present work a FLU-containing chloroplast membrane complex was identified, that besides FLU comprises the four enzymes catalyzing the final steps of chlorophyll synthesis. The results support the notion that FLU links chlorophyll synthesis and the target of feedback control, glutamyl-tRNA reductase, thereby allowing also the Mg-branch to control the initial step of tetrapyrrole synthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/biossíntese , Retroalimentação Fisiológica , Magnésio/metabolismo , Aldeído Oxirredutases/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Biocatálise , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo
5.
Plant J ; 65(5): 690-702, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21208309

RESUMO

Various mutant screens have been undertaken to identify constituents involved in the transmission of signals from the plastid to the nucleus. Many of these screens have been performed using carotenoid-deficient plants grown in the presence of norflurazon (NF), an inhibitor of phytoene desaturase. NF-treated plants are bleached and suppress the expression of nuclear genes encoding chloroplast proteins. Several genomes uncoupled (gun) mutants have been isolated that de-repress the expression of these nuclear genes. In the present study, a genetic screen has been established that circumvents severe photo-oxidative stress in NF-treated plants. Under these modified screening conditions, happy on norflurazon (hon) mutants have been identified that, like gun mutants, de-repress expression of the Lhcb gene, encoding a light-harvesting chlorophyll protein, but, in contrast to wild-type and gun mutants, are green in the presence of NF. hon mutations disturb plastid protein homeostasis, thereby activating plastid signaling and inducing stress acclimatization. Rather than defining constituents of a retrograde signaling pathway specifically associated with the NF-induced suppression of nuclear gene expression, as proposed for gun, hon mutations affect Lhcb expression more indirectly prior to initiation of plastid signaling in NF-treated seedlings. They pre-condition seedlings by inducing stress acclimatization, thereby attenuating the impact of a subsequent NF treatment.


Assuntos
Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Oxidativo , Piridazinas/farmacologia , Plântula/metabolismo , Aclimatação , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cloroplastos/genética , Clonagem Molecular , DNA de Plantas/genética , Teste de Complementação Genética , Homeostase , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Plântula/efeitos dos fármacos , Plântula/genética , Transdução de Sinais
6.
Plant J ; 60(3): 399-410, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19563435

RESUMO

The conditional flu mutant of Arabidopsis thaliana generates singlet oxygen ((1)O(2)) in plastids during a dark-to-light shift. Seedlings of flu bleach and die, whereas mature plants stop growing and develop macroscopic necrotic lesions. Several suppressor mutants, dubbed singlet oxygen-linked death activator (soldat), were identified that abrogate (1)O(2)-mediated cell death of flu seedlings. One of the soldat mutations, soldat10, affects a gene encoding a plastid-localized protein related to the human mitochondrial transcription termination factor mTERF. As a consequence of this mutation, plastid-specific rRNA levels decrease and protein synthesis in plastids of soldat10 is attenuated. This disruption of chloroplast homeostasis in soldat10 seedlings affects communication between chloroplasts and the nucleus and leads to changes in the steady-state concentration of nuclear gene transcripts. The soldat10 seedlings suffer from mild photo-oxidative stress, as indicated by the constitutive up-regulation of stress-related genes. Even though soldat10/flu seedlings overaccumulate the photosensitizer protochlorophyllide in the dark and activate the expression of (1)O(2)-responsive genes after a dark-to-light shift they do not show a (1)O(2)-dependent cell death response. Disturbance of chloroplast homeostasis in emerging soldat10/flu seedlings seems to antagonize a subsequent (1)O(2)-mediated cell death response without suppressing (1)O(2)-dependent retrograde signaling. The results of this work reveal the unexpected complexity of what is commonly referred to as 'plastid signaling'.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Mutação , Fatores de Terminação de Peptídeos/genética , Plastídeos/metabolismo , Transdução de Sinais , Oxigênio Singlete/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Morte Celular , Regulação da Expressão Gênica de Plantas , Fatores de Terminação de Peptídeos/metabolismo , Plântula/citologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transcrição Gênica
7.
EMBO Rep ; 9(5): 435-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18451767

RESUMO

When plant cells are under environmental stress, several chemically distinct reactive oxygen species (ROS) are generated simultaneously in various intracellular compartments and these can cause oxidative damage or act as signals. The conditional flu mutant of Arabidopsis, which generates singlet oxygen in plastids during a dark-to-light transition, has allowed the biological activity of singlet oxygen to be determined, and the criteria to distinguish between cytotoxicity and signalling of this particular ROS to be defined. The genetic basis of singlet-oxygen-mediated signalling has been revealed by the mutation of two nuclear genes encoding the plastid proteins EXECUTER (EX)1 and EX2, which are sufficient to abrogate singlet-oxygen-dependent stress responses. Conversely, responses due to higher cytotoxic levels of singlet oxygen are not suppressed in the ex1/ex2 background. Whether singlet oxygen levels lower than those that trigger genetically controlled cell death activate acclimation is now under investigation.


Assuntos
Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete , Arabidopsis/genética , Cloroplastos/metabolismo , Modelos Biológicos , Transdução de Sinais , Oxigênio Singlete/fisiologia
8.
Genes Dev ; 19(1): 176-87, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15630026

RESUMO

In photosynthetic organisms the accumulation of harmful photodynamic chlorophyll precursors is prevented because of the tight regulation of the tetrapyrrole pathway. FLU is one of the regulatory factors involved in this process in land plants. We have examined the function of a Flu-like gene (FLP) from Chlamydomonas that gives rise to two FLP transcripts through alternative splicing. These transcripts are translated into a short and a long protein that differ by only 12 amino acids but that interact differently with glutamyl-tRNA reductase, an enzyme involved in an early step of the chlorophyll biosynthetic pathway. Expression of FLPs is light-regulated at the level of RNA accumulation and splicing and is altered by mutations affecting the pathway. The relative levels of the long and short forms of FLP can be correlated with the accumulation of specific porphyrin intermediates, some of which have been implicated in a signaling chain from the chloroplast to the nucleus. Reciprocally, reduction of the FLP proteins by RNA interference leads to the accumulation of several porphyrin intermediates and to photobleaching when cells are transferred from the dark to the light. Thus the FLP proteins act as regulators of chlorophyll synthesis, and their expression is controlled by light and plastid signals.


Assuntos
Chlamydomonas/fisiologia , Clorofila/biossíntese , Luz , Proteínas de Membrana/fisiologia , Transdução de Sinais , Aldeído Oxirredutases/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Chlamydomonas/genética , Chlamydomonas/metabolismo , Proteínas de Membrana/genética , Plastídeos/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , RNA Mensageiro
9.
Plant J ; 40(6): 957-67, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15584960

RESUMO

The regulation of tetrapyrrole biosynthesis in higher plants has been attributed to metabolic feedback inhibition of Glu tRNA reductase by heme. Recently, another negative regulator of tetrapyrrole biosynthesis has been discovered, the FLU protein. During an extensive second site screen of mutagenized flu seedlings a suppressor of flu, ulf3, was identified that is allelic to hy1 and encodes a heme oxygenase. Increased levels of heme in the hy1 mutant have been implicated with inhibiting Glu tRNA reductase and suppressing the synthesis of delta-aminolevulinic acid (ALA) and Pchlide accumulation. When combined with hy1 or ulf3 upregulation of ALA synthesis and overaccumulation of protochlorophyllide in the flu mutants were severely suppressed supporting the notion that heme antagonizes the effect of the flu mutation by inhibiting Glu tRNA reductase independently of FLU. The coiled-coil domain at the C-terminal end of Glu tRNA reductase interacts with FLU, whereas the N-terminal site of Glu tRNA reductase that is necessary for the inhibition of the enzyme by heme is not required for this interaction. The interaction with FLU is specific for the Glu tRNA reductase encoded by HEMA1 that is expressed in photosynthetically active tissues. FLU seems to be part of a second regulatory circuit that controls chlorophyll biosynthesis by interacting directly with Glu tRNA reductase not only in etiolated seedlings but also in light-adapted green plants.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Heme/metabolismo , Tetrapirróis/biossíntese , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Escuridão , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Luz , Mutagênese , Fotossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
FEBS Lett ; 532(1-2): 27-30, 2002 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-12459457

RESUMO

Regulation of tetrapyrrole biosynthesis in plants has been attributed to feedback control of glutamyl-tRNA reductase (GLU-TR) by heme. Recently, another negative regulator, the FLU protein, has been discovered that operates independently of heme. A truncated form of FLU that contains two domains implicated in protein-protein interaction was co-expressed in yeast with either GLU-TR or glutamate-1-semialdehyde-2-1-aminotransferase (GSA-AT), the second enzyme involved in delta-aminolevulinic acid (ALA) biosynthesis. FLU interacts strongly with GLU-TR but not with GSA-AT. Two variants of FLU that carry single amino acid exchanges within their coiled coil and tetratricopeptide repeat (TPR) domains, respectively, were also tested. Only the FLU variant with the mutated TPR motif lost the capacity to interact with GLU-TR.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Transferases Intramoleculares/metabolismo , Estrutura Terciária de Proteína , Pirróis/metabolismo , Sequências Repetitivas de Aminoácidos , Tetrapirróis , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA