Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2077, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136139

RESUMO

More than a year after the start of the pandemic, COVID-19 remains a global health emergency. Although the immune response against SARS-CoV-2 has been extensively studied, some points remain controversial. One is the role of antibodies in viral clearance and modulation of disease severity. While passive transfer of neutralizing antibodies protects against SARS-CoV-2 infection in animal models, titers of anti-SARS-CoV-2 antibodies have been reported to be higher in patients suffering from more severe forms of the disease. A second key question for pandemic management and vaccine design is the persistence of the humoral response. Here, we characterized the antibody response in 187 COVID-19 patients, ranging from asymptomatic individuals to patients who died from COVID-19, and including patients who recovered. We developed in-house ELISAs to measure titers of IgG, IgM and IgA directed against the RBD or N regions in patient serum or plasma, and a spike-pseudotyped neutralization assay to analyse seroneutralization. Higher titers of virus-specific antibodies were detected in patients with severe COVID-19, including deceased patients, compared to asymptomatic patients. This demonstrates that fatal infection is not associated with defective humoral response. Finally, most of recovered patients still had anti-SARS-CoV-2 IgG more than 3 months after infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral , SARS-CoV-2/imunologia , Adulto , Idoso , COVID-19/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091472

RESUMO

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Evolução Biológica , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Proteínas Imediatamente Precoces/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Viroses/genética , Viroses/metabolismo , Replicação Viral/fisiologia , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA