Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Circ Heart Fail ; 12(4): e005517, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998395

RESUMO

Heart transplantation remains the preferred option for improving quality of life and survival for patients suffering from end-stage heart failure. Unfortunately, insufficient supply of cardiac grafts has become an obstacle. Increasing organ availability with donation after circulatory death (DCD) may be a promising option to overcome the organ shortage. Unlike conventional donation after brain death, DCD organs undergo a period of warm, global ischemia between circulatory arrest and graft procurement, which raises concerns for graft quality. Nonetheless, the potential of DCD heart transplantation is being reconsidered, after reports of more than 70 cases in Australia and the United Kingdom over the past 3 years. Ensuring optimal patient outcomes and generalized adoption of DCD in heart transplantation, however, requires further development of clinical protocols, which in turn require a better understanding of cardiac ischemia-reperfusion injury and the various possibilities to limit its adverse effects. Thus, we aim to provide an overview of the knowledge obtained with preclinical studies in animal models of DCD heart transplantation, to facilitate and promote the most effective and efficient advancement in preclinical research. A literature search of the PubMed database was performed to identify all relevant preclinical studies in DCD heart transplantation. Specific aspects relevant for DCD heart transplantation were analyzed, including animal models, graft procurement and storage conditions, cardioprotective approaches, and graft evaluation strategies. Several potential therapeutic strategies for optimizing graft quality are identified, and recommendations for further preclinical research are provided.


Assuntos
Morte Encefálica , Insuficiência Cardíaca/terapia , Transplante de Coração , Doadores de Tecidos/provisão & distribuição , Animais , Morte Encefálica/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Morte , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/fisiologia , Insuficiência Cardíaca/etiologia , Transplante de Coração/métodos , Humanos , Obtenção de Tecidos e Órgãos/métodos , Isquemia Quente/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-29487855

RESUMO

Cardiac transplantation has become limited by a critical shortage of suitable organs from brain-dead donors. Reports describing the successful clinical transplantation of hearts donated after circulatory death (DCD) have recently emerged. Hearts from DCD donors suffer significant ischemic injury prior to organ procurement; therefore, the traditional approach to the transplantation of hearts from brain-dead donors is not applicable to the DCD context. Advances in our understanding of ischemic post-conditioning have facilitated the development of DCD heart resuscitation strategies that can be used to minimize ischemia-reperfusion injury at the time of organ procurement. The availability of a clinically approved ex situ heart perfusion device now allows DCD heart preservation in a normothermic beating state and minimizes exposure to incremental cold ischemia. This technology also facilitates assessments of organ viability to be undertaken prior to transplantation, thereby minimizing the risk of primary graft dysfunction. The application of a tailored approach to DCD heart transplantation that focuses on organ resuscitation at the time of procurement, ex situ preservation, and pre-transplant assessments of organ viability has facilitated the successful clinical application of DCD heart transplantation. The transplantation of hearts from DCD donors is now a clinical reality. Investigating ways to optimize the resuscitation, preservation, evaluation, and long-term outcomes is vital to ensure a broader application of DCD heart transplantation in the future.

3.
Physiol Rep ; 5(7)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28373412

RESUMO

Chronic thromboembolic disease (CTED) is suboptimally defined by a mean pulmonary artery pressure (mPAP) <25 mmHg at rest in patients that remain symptomatic from chronic pulmonary artery thrombi. To improve identification of right ventricular (RV) pathology in patients with thromboembolic obstruction, we hypothesized that the RV ventriculo-arterial (Ees/Ea) coupling ratio at maximal stroke work (Ees/Eamax sw) derived from an animal model of pulmonary obstruction may be used to identify occult RV dysfunction (low Ees/Ea) or residual RV energetic reserve (high Ees/Ea). Eighteen open chested pigs had conductance catheter RV pressure-volume (PV)-loops recorded during PA snare to determine Ees/Eamax sw This was then applied to 10 patients with chronic thromboembolic pulmonary hypertension (CTEPH) and ten patients with CTED, also assessed by RV conductance catheter and cardiopulmonary exercise testing. All patients were then restratified by Ees/Ea. The animal model determined an Ees/Eamax sw = 0.68 ± 0.23 threshold, either side of which cardiac output and RV stroke work fell. Two patients with CTED were identified with an Ees/Ea well below 0.68 suggesting occult RV dysfunction whilst three patients with CTEPH demonstrated Ees/Ea ≥ 0.68 suggesting residual RV energetic reserve. Ees/Ea > 0.68 and Ees/Ea < 0.68 subgroups demonstrated constant RV stroke work but lower stroke volume (87.7 ± 22.1 vs. 60.1 ± 16.3 mL respectively, P = 0.006) and higher end-systolic pressure (36.7 ± 11.6 vs. 68.1 ± 16.7 mmHg respectively, P < 0.001). Lower Ees/Ea in CTED also correlated with reduced exercise ventilatory efficiency. Low Ees/Ea aligns with features of RV maladaptation in CTED both at rest and on exercise. Characterization of Ees/Ea in CTED may allow for better identification of occult RV dysfunction.


Assuntos
Circulação Pulmonar/fisiologia , Embolia Pulmonar/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Adulto , Idoso , Animais , Doença Crônica , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Suínos
4.
J Heart Lung Transplant ; 35(12): 1443-1452, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27916176

RESUMO

BACKGROUND: After a severe shortage of brain-dead donors, the demand for heart transplantation has never been greater. In an attempt to increase organ supply, abdominal and lung transplant programs have turned to the donation after circulatory-determined death (DCD) donor. However, because heart function cannot be assessed after circulatory death, DCD heart transplantation was deemed high risk and never adopted routinely. We report a novel method of functional assessment of the DCD heart resulting in a successful clinical program. METHODS: Normothermic regional perfusion (NRP) was used to restore function to the arrested DCD heart within the donor after exclusion of the cerebral circulation. After weaning from support, DCD hearts underwent functional assessment with cardiac-output studies, echocardiography, and pressure-volume loops. In the feasibility phase, hearts were transported perfused before evaluation of function in modified working mode extracorporeally. After the establishment of a reliable assessment technique, hearts with demonstrable good function were then selected for clinical transplantation. RESULTS: NRP was instituted in 13 adult DCD donors, median age of 33 years (interquartile range [IQR], 28-38 years), after a median ischemic time from withdrawal to perfusion of 24 minutes (IQR, 21-29; range, 17-146 minutes). Two of 4 hearts in the feasibility phase were unsuitable for transplantation after functional assessment. Nine DCD hearts were transplanted in the clinical phase, with 100% survival. The median intensive care duration was 5 days (IQR, 4-5 days), with 2 patients requiring mechanical support. There were no episodes of rejection (total, 1,436 patient-days; range, 48-297). During the same period, we performed 20 standard heart transplants using brain-dead donors. CONCLUSIONS: NRP allows rapid reperfusion and functional assessment of the DCD donor heart, ensuring only viable hearts are selected for transplantation. This technique minimizes the risk of primary graft dysfunction and maximizes confidence in DCD heart transplantation, realizing a 45% increase in our heart transplant activity.


Assuntos
Transplante de Coração , Adulto , Humanos , Perfusão , Doadores de Tecidos , Obtenção de Tecidos e Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA