Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(24): 126270, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39197219

RESUMO

Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk. The H1N1 glycoproteins from the influenza virus A/California/04/2009 strain were displayed on human immunodeficiency virus 1 (HIV-1) gag-based virus-like particles (VLP). Using the baculovirus insect cell expression system, we biased the quantity of surface glycoproteins employing two different promoters, the very late baculovirus p10 promoter and the early and late gp64 promoter. This led to a 1:1 to 2:1 HA:NA ratio, which was approximately double or triple the amount of NA as present on the wild-type influenza A virus (HA:NA ratio 3:1 to 5:1). Furthermore, by insertion of 15 amino acids from the A-New York/61/2012 strain (NY12) which prolongates the NA stalk (NA long stalk; NA-LS), we intended to improve the accessibility of the NA. Six different types of VLPs were produced and purified using a platform downstream process based on Capto-Core 700™ followed by Capto-Heparin™ affinity chromatography combined with ultracentrifugation. These VLPs were then tested in a mouse model. Robust titers of antibodies that inhibit the neuraminidase activity were elicited even after vaccination with two low doses (0.3 µg) of the H1N1 VLPs without compromising the anti-HA responses. In conclusion, our results demonstrate the feasibility of the two developed strategies to retain HA immunogenicity and improve NA immunogenicity as a future influenza vaccine candidate.


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Neuraminidase , Vacinas de Partículas Semelhantes a Vírus , Animais , Neuraminidase/imunologia , Neuraminidase/genética , Vacinas contra Influenza/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Imunogenicidade da Vacina , Camundongos Endogâmicos BALB C , Feminino , HIV-1/imunologia , HIV-1/genética , Epitopos/imunologia , Humanos
2.
Prep Biochem Biotechnol ; 53(8): 891-905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36576211

RESUMO

The CASPON enzyme became an interesting enzyme for fusion protein processing because it generates an authentic N-terminus. However, the high cysteine content of the CASPON enzyme may induce aggregation via disulfide-bond formation, which can reduce enzymatic activity and be considered a critical quality attribute. Different multimerization states of the CASPON enzyme were isolated by preparative size exclusion chromatography and analyzed with respect to multimerization propensity and enzymatic activity. The impact of co-solutes on multimerization was studied in solution and in adsorbed state. Furthermore, protein-protein interactions in the presence of different co-solutes were measured by self-interaction chromatography and were then correlated to the multimerization propensity. The dimer was the most stable and active species with 50% higher enzymatic activity than the tetramer. Multimerization was mainly governed by a cysteine-mediated pathway, as indicated by DTT-induced reduction of most caspase multimers. In the presence of ammonium sulfate, attractive protein-protein interactions were consistent with those observed for higher multimerization when the cysteine-mediated pathway was followed. Multimerization was also observed under attractive conditions on a chromatographic stationary phase. These findings corroborate common rules to perform protein purification with low residence time to avoid disulfide bond formation and conformational change of the protein upon adsorption.


Assuntos
Cisteína , Dissulfetos , Cisteína/química , Cromatografia em Gel , Dissulfetos/química , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA