RESUMO
We report the application of a covalent probe based on a d-glucosamine scaffold for the profiling of the bacterial pathogen Klebsiella pneumoniae. Incubation of K. pneumoniae lysates with the probe followed by electrophoretic separation and in-gel fluorescence detection allowed the generation of strain-specific signatures and the differentiation of a carbapenem-resistant strain. The labelling profile of the probe was independent of its anomeric configuration and included several low-abundance proteins not readily detectable by conventional protein staining. Initial target identification experiments by mass spectrometry suggest that target proteins include several carbohydrate-recognising proteins, which indicates that the sugar scaffold may have a role for target recognition.
Assuntos
Proteínas de Bactérias/genética , Corantes Fluorescentes/química , Glucosamina/química , Klebsiella pneumoniae/genética , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Perfilação da Expressão Gênica , Glucosamina/síntese química , Klebsiella pneumoniae/isolamento & purificação , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Bacterial glycosyltransferases are potential targets for the development of novel antibiotics and anti-virulence agents. We report a novel inhibitor design for the retaining α-1,4-galactosyltransferase LgtC from Neisseria meningitidis. Our design is based on the installation of an electrophilic warhead on the LgtC acceptor substrate and targeted at a non-catalytic cysteine residue in the LgtC active site. We have successfully synthesised two prototype inhibitors in four steps from lactulose. The key step in our synthesis is a Heyns rearrangement, during which we observed the formation of a hitherto unknown side product. While both lactosamine derivatives behaved as moderate inhibitors of LgtC, they also retained residual substrate activity. These results suggest that in contrast to our original design, these inhibitors do not act via a covalent mode of action, but are most likely non-covalent inhibitors.