Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(2): 026901, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277597

RESUMO

Negatively charged group-IV defects in diamond show great potential as quantum network nodes due to their efficient spin-photon interface. However, reaching sufficiently long coherence times remains a challenge. In this work, we demonstrate coherent control of germanium vacancy center (GeV) at millikelvin temperatures and extend its coherence time by several orders of magnitude to more than 20 ms. We model the magnetic and amplitude noise as an Ornstein-Uhlenbeck process, reproducing the experimental results well. The utilized method paves the way to optimized coherence times of group-IV defects in various experimental conditions and their successful applications in quantum technologies.

2.
Phys Rev Lett ; 122(19): 190503, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144926

RESUMO

In this Letter, we demonstrate initialization and readout of nuclear spins via a negatively charged silicon-vacancy (SiV) electron spin qubit. Under Hartmann-Hahn conditions the electron spin polarization is coherently transferred to the nuclear spin. The readout of the nuclear polarization is observed via the fluorescence of the SiV. We also show that the coherence time of the nuclear spin (6 ms) is limited by the electron spin-lattice relaxation due to the hyperfine coupling to the electron spin. This Letter paves the way toward realization of building blocks of quantum hardware with an efficient spin-photon interface based on the SiV color center coupled to a long lasting nuclear memory.

3.
Phys Rev Lett ; 119(25): 253601, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303349

RESUMO

Tin-vacancy (Sn-V) color centers were created in diamond via ion implantation and subsequent high-temperature annealing up to 2100 °C at 7.7 GPa. The first-principles calculation suggested that a large atom of tin can be incorporated into a diamond lattice with a split-vacancy configuration, in which a tin atom sits on an interstitial site with two neighboring vacancies. The Sn-V center showed a sharp zero phonon line at 619 nm at room temperature. This line split into four peaks at cryogenic temperatures, with a larger ground state splitting (∼850 GHz) than that of color centers based on other group-IV elements, i.e., silicon-vacancy (Si-V) and germanium-vacancy (Ge-V) centers. The excited state lifetime was estimated, via Hanbury Brown-Twiss interferometry measurements on single Sn-V quantum emitters, to be ∼5 ns. The order of the experimentally obtained optical transition energies, compared with those of Si-V and Ge-V centers, was in good agreement with the theoretical calculations.

4.
Phys Rev Lett ; 113(26): 263602, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615330

RESUMO

The silicon-vacancy (SiV-) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4±0.2 ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35±3 ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the 29Si isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA