Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(9): 8376-8392, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37071747

RESUMO

Super-resolution microscopy can transform our understanding of nanoparticle-cell interactions. Here, we established a super-resolution imaging technology to visualize nanoparticle distributions inside mammalian cells. The cells were exposed to metallic nanoparticles and then embedded within different swellable hydrogels to enable quantitative three-dimensional (3D) imaging approaching electron-microscopy-like resolution using a standard light microscope. By exploiting the nanoparticles' light scattering properties, we demonstrated quantitative label-free imaging of intracellular nanoparticles with ultrastructural context. We confirmed the compatibility of two expansion microscopy protocols, protein retention and pan-expansion microscopy, with nanoparticle uptake studies. We validated relative differences between nanoparticle cellular accumulation for various surface modifications using mass spectrometry and determined the intracellular nanoparticle spatial distribution in 3D for entire single cells. This super-resolution imaging platform technology may be broadly used to understand the nanoparticle intracellular fate in fundamental and applied studies to potentially inform the engineering of safer and more effective nanomedicines.


Assuntos
Nanopartículas Metálicas , Animais , Nanopartículas Metálicas/química , Microscopia Eletrônica , Nanomedicina , Espectrometria de Massas , Imageamento Tridimensional , Mamíferos
2.
Nano Lett ; 22(17): 7119-7128, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048773

RESUMO

We used heparosan (HEP) polysaccharides for controlling nanoparticle delivery to innate immune cells. Our results show that HEP-coated nanoparticles were endocytosed in a time-dependent manner by innate immune cells via both clathrin-mediated and macropinocytosis pathways. Upon endocytosis, we observed HEP-coated nanoparticles in intracellular vesicles and the cytoplasm, demonstrating the potential for nanoparticle escape from intracellular vesicles. Competition with other glycosaminoglycan types inhibited the endocytosis of HEP-coated nanoparticles only partially. We further found that nanoparticle uptake into innate immune cells can be controlled by more than 3 orders of magnitude via systematically varying the HEP surface density. Our results suggest a substantial potential for HEP-coated nanoparticles to target innate immune cells for efficient intracellular delivery, including into the cytoplasm. This HEP nanoparticle surface engineering technology may be broadly used to develop efficient nanoscale devices for drug and gene delivery as well as possibly for gene editing and immuno-engineering applications.


Assuntos
Nanopartículas , Clatrina/metabolismo , Dissacarídeos , Endocitose , Imunidade Inata , Polissacarídeos
3.
Nano Lett ; 22(5): 2103-2111, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35166110

RESUMO

Nanoparticle modification with poly(ethylene glycol) (PEG) is a widely used surface engineering strategy in nanomedicine. However, since the artificial PEG polymer may adversely impact nanomedicine safety and efficacy, alternative surface modifications are needed. Here, we explored the "self" polysaccharide heparosan (HEP) to prepare colloidally stable HEP-coated nanoparticles, including gold and silver nanoparticles and liposomes. We found that the HEP-coating reduced the nanoparticle protein corona formation as efficiently as PEG coatings upon serum incubation. Liquid chromatography-mass spectrometry revealed the protein corona profiles. Heparosan-coated nanoparticles exhibited up to 230-fold higher uptake in certain innate immune cells, but not in other tested cell types, than PEGylated nanoparticles. No noticeable cytotoxicity was observed. Serum proteins did not mediate the high cell uptake of HEP-coated nanoparticles. Our work suggests that HEP polymers may be an effective surface modification technology for nanomedicines to safely and efficiently target certain innate immune cells.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Adsorção , Proteínas Sanguíneas , Dissacarídeos , Nanopartículas/química , Polietilenoglicóis/química , Polímeros , Polissacarídeos , Prata
4.
Adv Photonics Res ; 3(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36686152

RESUMO

Bioimaging enables the spatiotemporal visualization of biological processes at various scales empowered by a range of different imaging modalities and contrast agents. Upconversion nanoparticles (UCNPs) represent a distinct type of such contrast agents with the potential to transform bioimaging due to their unique optical properties and functional design flexibilities. This review explores and discusses the opportunities, challenges, and limitations that UCNPs exhibit as bioimaging probes and highlights applications with spatial dimensions ranging from the single nanoparticle level to cellular, tissue, and whole animal imaging. We further summarized recent advancements in bioimaging applications enabled by UCNPs, including super-resolution techniques and multimodal imaging methods, and provide a perspective on the future potential of UCNP-based technologies in bioimaging research and clinical translation. This review may provide a valuable resource for researchers interested in exploring and applying UCNP-based bioimaging technologies.

5.
Annu Rev Pharmacol Toxicol ; 61: 269-289, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32841092

RESUMO

Nanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.


Assuntos
Nanopartículas , Humanos , Espécies Reativas de Oxigênio
6.
Antiviral Res ; 170: 104548, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271764

RESUMO

Oxysterol-binding Protein (OSBP) is a human lipid-transport protein required for the cellular replication of many types of viruses, including several human pathogens. The structurally-diverse small molecule compounds OSW-1, itraconazole (ITZ), T-00127-HEV2 (THEV) and TTP-8307 (TTP) inhibit viral replication through interaction with the OSBP protein. The OSW-1 compound reduces intracellular OSBP, and the reduction of OSBP protein levels persists multiple days after the OSW-1-compound treatment is stopped. The OSW-1-induced reduction of OSBP levels inhibited Enterovirus replication prophylactically in cells. In this report, the OSBP-interacting compounds ITZ, THEV, and TTP are shown not to reduce OSBP levels in cells, unlike the OSW-1-compound, and the OSW-1 compound is determined to be the only compound capable of providing prophylactic antiviral activity in cells. Furthermore, OSW-1 and THEV inhibit the binding of 25-hydroxycholesterol (25-OHC) to OSBP indicating that these compounds bind at the conserved sterol ligand binding site. The ITZ and TTP compounds do not inhibit 25-hydroxycholesterol binding to OSBP, and therefore ITZ and TTP interact with OSBP through other, unidentified binding sites. Co-administration of the THEV compound partially blocks the cellular activity of OSW-1, including the reduction of cellular OSBP protein levels; co-administration of the ITZ and TTP compounds have minimal effect on OSW-1 cellular activity further supporting different modes of interaction with these compounds to OSBP. OSW-1, ITZ, THEV, and TTP treatment alter OSBP cellular localization and levels, but in four distinct ways. Co-administration of OSW-1 and ITZ induced OSBP cellular localization patterns with features similar to the effects of ITZ and OSW-1 treatment alone. Based on these results, OSBP is capable of interacting with multiple structural classes of antiviral small molecule compounds at different binding sites, and the different compounds have distinct effects on OSBP cellular activity.


Assuntos
Antivirais/farmacologia , Enterovirus/efeitos dos fármacos , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/metabolismo , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Hidroxicolesteróis/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA