Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454854

RESUMO

Slowly cycling/infrequently proliferating tumor cells present a clinical challenge due to their ability to evade treatment. Previous studies established that high levels of SOX2 in both fetal and tumor cells restrict cell proliferation and induce a slowly cycling state. However, the mechanisms through which elevated SOX2 levels inhibit tumor cell proliferation have not been identified. To identify common mechanisms through which SOX2 elevation restricts tumor cell proliferation, we initially performed RNA-seq using two diverse tumor cell types. SOX2 elevation in both cell types downregulated MYC target genes. Consistent with these findings, elevating SOX2 in five cell lines representing three different human cancer types decreased MYC expression. Importantly, the expression of a dominant-negative MYC variant, omomyc, recapitulated many of the effects of SOX2 on proliferation, cell cycle, gene expression, and biosynthetic activity. We also demonstrated that rescuing MYC activity in the context of elevated SOX2 induces cell death, indicating that the downregulation of MYC is a critical mechanistic step necessary to maintain survival in the slowly cycling state induced by elevated SOX2. Altogether, our findings uncover a novel SOX2:MYC signaling axis and provide important insights into the molecular mechanisms through which SOX2 elevation induces a slowly cycling proliferative state.

2.
BMC Cancer ; 20(1): 941, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998722

RESUMO

BACKGROUND: Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. METHODS: To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. RESULTS: Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. CONCLUSIONS: Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


Assuntos
Proliferação de Células/genética , Recidiva Local de Neoplasia/genética , Neoplasias/genética , Fatores de Transcrição SOXB1/genética , Apoptose/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia
3.
J Cell Physiol ; 235(4): 3731-3740, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31587305

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer deaths in men. In this cancer, the stem cell transcription factor SOX2 increases during tumor progression, especially as the cancer progresses to the highly aggressive neuroendocrine-like phenotype. Other studies have shown that knockdown of RB1 and TP53 increases the expression of neuroendocrine markers, decreases the sensitivity to enzalutamide, and increases the expression of SOX2. Importantly, knockdown of SOX2 in the context of RB1 and TP53 depletion restored sensitivity to enzalutamide and reduced the expression of neuroendocrine markers. In this study, we examined whether elevating SOX2 is not only necessary, but also sufficient on its own to promote the expression of neuroendocrine markers and confer enzalutamide resistance. For this purpose, we engineered LNCaP cells for inducible overexpression of SOX2 (i-SOX2-LNCaP). As shown previously for other tumor cell types, inducible elevation of SOX2 in i-SOX2-LNCaP inhibited cell proliferation. SOX2 elevation also increased the expression of several neuroendocrine markers, including several neuropeptides and synaptophysin. However, SOX2 elevation did not decrease the sensitivity of i-SOX2-LNCaP cells to enzalutamide, which indicates that elevating SOX2 on its own is not sufficient to confer enzalutamide resistance. Furthermore, knocking down SOX2 in C4-2B cells, a derivative of LNCaP cells which is far less sensitive to enzalutamide and which expresses much higher levels of SOX2 than LNCaP cells, did not alter the growth response to this antiandrogen. Thus, our studies indicate that NE marker expression can increase independently of the sensitivity to enzalutamide.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição SOXB1/genética , Antagonistas de Androgênios/metabolismo , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Sistemas Neurossecretores/metabolismo , Nitrilas , Feniltioidantoína/farmacologia , Próstata/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
4.
J Cell Physiol ; 234(11): 19298-19306, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344986

RESUMO

The stem cell transcription factor Sox2 is widely recognized for its many roles during normal development and cancer. Over the last several years, it has become increasingly evident that Sox2 dosage plays critical roles in both normal and malignant cells. The work described in this review indicates that the dosage of Sox2 influences cell fate decisions made during normal mammalian development, as well as cell fate decisions in cancer, including those that influence the tumor cell of origin and progression of the cancer. Equally important, Sox2 dosage is a key determinant in the proliferation of both normal cells and tumor cells, where proliferation is restricted in Sox2high cells. Collectively, the studies reviewed here indicate that tumor cells utilize the fundamental effects of Sox2 dosage to suit their own needs. Finally, we speculate that elevated expression of Sox2 helps establish and maintain tumor dormancy in Sox2-positive cancers.


Assuntos
Desenvolvimento Embrionário/genética , Dosagem de Genes/genética , Neoplasias/genética , Fatores de Transcrição SOXB1/genética , Proliferação de Células , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA