Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Front Genet ; 15: 1381333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706794

RESUMO

Sea louse (Lepeophtheirus salmonis) infestation of Atlantic salmon (Salmo salar) is a significant challenge in aquaculture. Over the years, this parasite has developed immunity to medicinal control compounds, and non-medicinal control methods have been proven to be stressful, hence the need to study the genomic architecture of salmon resistance to sea lice. Thus, this research used whole-genome sequence (WGS) data to study the genetic basis of the trait since most research using fewer SNPs did not identify significant quantitative trait loci. Mowi Genetics AS provided the genotype (50 k SNPs) and phenotype data for this research after conducting a sea lice challenge test on 3,185 salmon smolts belonging to 191 full-sib families. The 50 k SNP genotype was imputed to WGS using the information from 197 closely related individuals with sequence data. The WGS and 50 k SNPs of the challenged population were then used to estimate genetic parameters, perform a genome-wide association study (GWAS), predict genomic breeding values, and estimate its accuracy for host resistance to sea lice. The heritability of host resistance to sea lice was estimated to be 0.21 and 0.22, while the accuracy of genomic prediction was estimated to be 0.65 and 0.64 for array and WGS data, respectively. In addition, the association test using both array and WGS data did not identify any marker associated with sea lice resistance at the genome-wide level. We conclude that sea lice resistance is a polygenic trait that is moderately heritable. The genomic predictions using medium-density SNP genotyping array were equally good or better than those based on WGS data.

2.
J Anim Breed Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564181

RESUMO

The aim of this study was to investigate the reference population size required to obtain substantial prediction accuracy within- and across-lines and the effect of using a multi-line reference population for genomic predictions of maternal traits in pigs. The data consisted of two nucleus pig populations, one pure-bred Landrace (L) and one Synthetic (S) Yorkshire/Large White line. All animals were genotyped with up to 30 K animals in each line, and all had records on maternal traits. Prediction accuracy was tested with three different marker data sets: High-density SNP (HD), whole genome sequence (WGS), and markers derived from WGS based on pig combined annotation dependent depletion-score (pCADD). Also, two different genomic prediction methods (GBLUP and Bayes GC) were compared for four maternal traits; total number piglets born (TNB), total number of stillborn piglets (STB), Shoulder Lesion Score and Body Condition Score. The main results from this study showed that a reference population of 3 K-6 K animals for within-line prediction generally was sufficient to achieve high prediction accuracy. However, when the number of animals in the reference population was increased to 30 K, the prediction accuracy significantly increased for the traits TNB and STB. For multi-line prediction accuracy, the accuracy was most dependent on the number of within-line animals in the reference data. The S-line provided a generally higher prediction accuracy compared to the L-line. Using pCADD scores to reduce the number of markers from WGS data in combination with the GBLUP method generally reduced prediction accuracies relative to GBLUP using HD genotypes. The BayesGC method benefited from a large reference population and was less dependent on the different genotype marker datasets to achieve a high prediction accuracy.

3.
Genet Sel Evol ; 56(1): 17, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429665

RESUMO

BACKGROUND: Since the very beginning of genomic selection, researchers investigated methods that improved upon SNP-BLUP (single nucleotide polymorphism best linear unbiased prediction). SNP-BLUP gives equal weight to all SNPs, whereas it is expected that many SNPs are not near causal variants and thus do not have substantial effects. A recent approach to remedy this is to use genome-wide association study (GWAS) findings and increase the weights of GWAS-top-SNPs in genomic predictions. Here, we employ a genome-wide approach to integrate GWAS results into genomic prediction, called GWABLUP. RESULTS: GWABLUP consists of the following steps: (1) performing a GWAS in the training data which results in likelihood ratios; (2) smoothing the likelihood ratios over the SNPs; (3) combining the smoothed likelihood ratio with the prior probability of SNPs having non-zero effects, which yields the posterior probability of the SNPs; (4) calculating a weighted genomic relationship matrix using the posterior probabilities as weights; and (5) performing genomic prediction using the weighted genomic relationship matrix. Using high-density genotypes and milk, fat, protein and somatic cell count phenotypes on dairy cows, GWABLUP was compared to GBLUP, GBLUP (topSNPs) with extra weights for GWAS top-SNPs, and BayesGC, i.e. a Bayesian variable selection model. The GWAS resulted in six, five, four, and three genome-wide significant peaks for milk, fat and protein yield and somatic cell count, respectively. GWABLUP genomic predictions were 10, 6, 7 and 1% more reliable than those of GBLUP for milk, fat and protein yield and somatic cell count, respectively. It was also more reliable than GBLUP (topSNPs) for all four traits, and more reliable than BayesGC for three of the traits. Although GWABLUP showed a tendency towards inflation bias for three of the traits, this was not statistically significant. In a multitrait analysis, GWABLUP yielded the highest accuracy for two of the traits. However, for SCC, which was relatively unrelated to the yield traits, including yield trait GWAS-results reduced the reliability compared to a single trait analysis. CONCLUSIONS: GWABLUP uses GWAS results to differentially weigh all the SNPs in a weighted GBLUP genomic prediction analysis. GWABLUP yielded up to 10% and 13% more reliable genomic predictions than GBLUP for single and multitrait analyses, respectively. Extension of GWABLUP to single-step analyses is straightforward.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Animais , Bovinos/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Reprodutibilidade dos Testes , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Modelos Genéticos
4.
J Anim Breed Genet ; 140(5): 473-484, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37014360

RESUMO

Many quantitative traits measured in breeding programs are genetically correlated. The genetic correlations between the traits indicate that the measurement of one trait carries information on others. To benefit from this information, multi-trait genomic prediction (MTGP) is preferable to use. However, MTGP is more difficult to implement compared to single-trait genomic prediction (STGP), and even more challenging for the goal to exploit not only the information on other traits but also the information on ungenotyped animals. This could be accomplished using both single and multistep methods. The single-step method was achieved by implementing a single-step genomic best linear unbiased prediction (ssGBLUP) approach using a multi-trait model. Here, we examined a multistep analysis based on an approach called "Absorption" to achieve this goal. The Absorption approach absorbed all available information including the phenotypic information on ungenotyped animals as well as the information on other traits if applicable, into mixed model equations of genotyped animals. The multistep analysis included (1) to apply the Absorption approach that exploits all available information and (2) to implement genomic BLUP (GBLUP) prediction on the absorbed dataset. In this study, the ssGBLUP and multistep analysis were applied to 5 traits in Duroc pigs, which were slaughter percentage, feed consumption from 40 to 120 kg (FC40_120), days of growth from 40 to 120 kg (D40_120), age at 40 kg (A40) and lean meat percentage. The results showed that MTGP yielded higher accuracy than STGP, which on average was 0.057 higher for the multistep method and 0.045 higher for ssGBLUP. The multistep method achieved similar prediction accuracy as ssGBLUP. However, the prediction bias of the multistep method was in general lower than that of ssGBLUP.


Assuntos
Genômica , Carne , Animais , Suínos , Fenótipo , Genótipo
5.
PLoS Genet ; 19(1): e1010599, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693108

RESUMO

Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Cães , Humanos , Animais , Teorema de Bayes , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/veterinária , Insuficiência Renal Crônica/epidemiologia , Rim , Alelos , Polimorfismo de Nucleotídeo Único
6.
Front Genet ; 13: 896774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092907

RESUMO

Genomic selection has a great potential in aquaculture breeding since many important traits are not directly measured on the candidates themselves. However, its implementation has been hindered by staggering genotyping costs because of many individual genotypes. In this study, we explored the potential of DNA pooling for creating a reference population as a tool for genomic selection of a binary trait. Two datasets from the SalmoBreed population challenged with salmonid alphavirus, which causes pancreas disease, were used. Dataset-1, that includes 855 individuals (478 survivors and 377 dead), was used to develop four DNA pool samples (i.e., 2 pools each for dead and survival). Dataset-2 includes 914 individuals (435 survivors and 479 dead) belonging to 65 full-sibling families and was used to develop in-silico DNA pools. SNP effects from the pool data were calculated based on allele frequencies estimated from the pools and used to calculate genomic breeding values (GEBVs). The correlation between SNP effects estimated based on individual genotypes and pooled data increased from 0.3 to 0.912 when the number of pools increased from 1 to 200. A similar trend was also observed for the correlation between GEBVs, which increased from 0.84 to 0.976, as the number of pools per phenotype increased from 1 to 200. For dataset-1, the accuracy of prediction was 0.71 and 0.70 when the DNA pools were sequenced in 40× and 20×, respectively, compared to an accuracy of 0.73 for the SNP chip genotypes. For dataset-2, the accuracy of prediction increased from 0.574 to 0.691 when the number of in-silico DNA pools increased from 1 to 200. For this dataset, the accuracy of prediction using individual genotypes was 0.712. A limited effect of sequencing depth on the correlation of GEBVs and prediction accuracy was observed. Results showed that a large number of pools are required to achieve as good prediction as individual genotypes; however, alternative effective pooling strategies should be studied to reduce the number of pools without reducing the prediction power. Nevertheless, it is demonstrated that pooling of a reference population can be used as a tool to optimize between cost and accuracy of selection.

7.
J Anim Breed Genet ; 139(6): 654-665, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35758628

RESUMO

The aim of this study was to compare three methods of genomic prediction: GBLUP, BayesC and BayesGC for genomic prediction of six maternal traits in Landrace sows using a panel of 660 K SNPs. The effects of different priors for the Bayesian methods were also investigated. GBLUP does not take the genetic architecture into account as all SNPs are assumed to have equally sized effects and relies heavily on the relationships between the animals for accurate predictions. Bayesian approaches rely on both fitting SNPs that describe relationships between animals in addition to fitting single SNP effects directly. Both the relationship between the animals and single SNP effects are important for accurate predictions. Maternal traits in sows are often more difficult to record and have lower heritabilities. BayesGC was generally the method with the higher accuracy, although its accuracy was for some traits matched by that of GBLUP and for others by that of BayesC. For piglet mortality within 3 weeks, BayesGC achieved up to 9.2% higher accuracy. For many of the traits, however, the methods did not show significant differences in accuracies.


Assuntos
Genoma , Genômica , Animais , Teorema de Bayes , Feminino , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Suínos/genética
8.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752161

RESUMO

Bias and inflation in genomic evaluation with the single-step methods have been reported in several studies. Incompatibility between the base-populations of the pedigree-based and the genomic relationship matrix (G) could be a reason for these biases. Inappropriate ways of accounting for missing parents could be another reason for biases in genetic evaluations with or without genomic information. To handle these problems, we fitted and evaluated a fixed covariate (J) that contains ones for genotyped animals and zeros for unrelated non-genotyped animals, or pedigree-based regression coefficients for related non-genotyped animals. We also evaluated alternative ways of fitting the J covariate together with genetic groups on biases and stability of breeding value estimates, and of including it into G as a random effect. In a whole vs. partial data set comparison, four scenarios were investigated for the partial data: genotypes missing, phenotypes missing, both genotypes and phenotypes missing, and pedigree missing. Fitting J either as fixed or random reduced level-bias and inflation and increased stability of genomic predictions as compared to the basic model where neither J nor genetic groups were fitted. In most models, genomic predictions were largely biased for scenarios with missing genotype and phenotype information. The biases were reduced for models which combined group and J effects. Models with these corrected group covariates performed better than the recently published model where genetic groups were encapsulated and fitted as random via the Quaas and Pollak transformation. In our Norwegian Red cattle data, a model which combined group and J regression coefficients was preferred because it showed least bias and highest stability of genomic predictions across the scenarios.


Our study dealt with strategies on how to reduce biases (inflation and level-bias) and improve a parameter related to accuracy (stability) of genomic predictions of breeding values that combine genotyped and non-genotyped animals, which are denoted as single-step genomic predictions. We tried to remedy incompatibilities between the pedigree- and the genomics-based relationships matrices by fitting a covariate (J) that corrects for base-population differences that may occur between both relationship matrices. We also evaluated alternative ways to combine the J covariate and genetic group effects to account for missing parental information, which often occurs in practical breeding schemes. We found that fitting J either as fixed or random reduced level-bias and inflation and increased stability of genomic predictions as compared to the basic model where neither J nor genetic groups were fitted. Level-biases and inflation of breeding value estimates were reduced, and stability of genomic predictions improved for models which combined group and J effects. A model which fits group regression coefficients minus the part that could be explained from pedigree was recommended because it showed least bias and highest stability across the scenarios and has theoretical justification.


Assuntos
Genoma , Modelos Genéticos , Animais , Bovinos/genética , Genômica/métodos , Noruega , Linhagem , Fenótipo
9.
J Anim Breed Genet ; 139(1): 1-12, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418183

RESUMO

The goal of this study was to assess the feasibility of across-country genomic predictions in Norwegian White Sheep (NWS) and New Zealand Composite (NZC) sheep populations with similar development history. Different training populations were evaluated (i.e., including only NWS or NZC, or combining both populations). Predictions were performed using the actual phenotypes (normalized) and the single-step GBLUP via Bayesian inference. Genotyped NWS animals born in 2016 (N = 267) were used to assess the accuracy and bias of genomic estimated breeding values (GEBVs) predicted for birth weight (BW), weaning weight (WW), carcass weight (CW), EUROP carcass classification (EUC), and EUROP fat grading (EUF). The accuracy and bias of GEBVs differed across traits and training population used. For instance, the GEBV accuracies ranged from 0.13 (BW) to 0.44 (EUC) for GEBVs predicted including only NWS, from 0.06 (BW) to 0.15 (CW) when including only NZC, and from 0.10 (BW) to 0.41 (EUC) when including both NWS and NZC animals in the training population. The regression coefficients used to assess the spread of GEBVs (bias) ranged from 0.26 (BW) to 0.64 (EUF) for only NWS, 0.10 (EUC) to 0.52 (CW) for only NZC, and from 0.42 (WW) to 2.23 (EUC) for both NWS and NZC in the training population. Our findings suggest that across-country genomic predictions based on ssGBLUP might be possible for NWS and NZC, especially for novel traits.


Assuntos
Genoma , Genômica , Animais , Teorema de Bayes , Genótipo , Modelos Genéticos , Nova Zelândia , Fenótipo , Polimorfismo de Nucleotídeo Único , Ovinos/genética
10.
Genet Sel Evol ; 53(1): 19, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637049

RESUMO

BACKGROUND: Whole-genome sequence (WGS) data are increasingly available on large numbers of individuals in animal and plant breeding and in human genetics through second-generation resequencing technologies, 1000 genomes projects, and large-scale genotype imputation from lower marker densities. Here, we present a computationally fast implementation of a variable selection genomic prediction method, that could handle WGS data on more than 35,000 individuals, test its accuracy for across-breed predictions and assess its quantitative trait locus (QTL) mapping precision. METHODS: The Monte Carlo Markov chain (MCMC) variable selection model (Bayes GC) fits simultaneously a genomic best linear unbiased prediction (GBLUP) term, i.e. a polygenic effect whose correlations are described by a genomic relationship matrix (G), and a Bayes C term, i.e. a set of single nucleotide polymorphisms (SNPs) with large effects selected by the model. Computational speed is improved by a Metropolis-Hastings sampling that directs computations to the SNPs, which are, a priori, most likely to be included into the model. Speed is also improved by running many relatively short MCMC chains. Memory requirements are reduced by storing the genotype matrix in binary form. The model was tested on a WGS dataset containing Holstein, Jersey and Australian Red cattle. The data contained 4,809,520 genotypes on 35,549 individuals together with their milk, fat and protein yields, and fat and protein percentage traits. RESULTS: The prediction accuracies of the Jersey individuals improved by 1.5% when using across-breed GBLUP compared to within-breed predictions. Using WGS instead of 600 k SNP-chip data yielded on average a 3% accuracy improvement for Australian Red cows. QTL were fine-mapped by locating the SNP with the highest posterior probability of being included in the model. Various QTL known from the literature were rediscovered, and a new SNP affecting milk production was discovered on chromosome 20 at 34.501126 Mb. Due to the high mapping precision, it was clear that many of the discovered QTL were the same across the five dairy traits. CONCLUSIONS: Across-breed Bayes GC genomic prediction improved prediction accuracies compared to GBLUP. The combination of across-breed WGS data and Bayesian genomic prediction proved remarkably effective for the fine-mapping of QTL.


Assuntos
Cruzamento/métodos , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/métodos , Animais , Feminino , Masculino , Produtos da Carne/normas , Característica Quantitativa Herdável
11.
Front Genet ; 11: 880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903415

RESUMO

Management of genetic diversity aims to (i) maintain heterozygosity, which ameliorates inbreeding depression and loss of genetic variation at loci that may become of importance in the future; and (ii) avoid genetic drift, which prevents deleterious recessives (e.g., rare disease alleles) from drifting to high frequency, and prevents random drift of (functional) traits. In the genomics era, genomics data allow for many alternative measures of inbreeding and genomic relationships. Genomic relationships/inbreeding can be classified into (i) homozygosity/heterozygosity based (e.g., molecular kinship matrix); (ii) genetic drift-based, i.e., changes of allele frequencies; or (iii) IBD-based, i.e., SNPs are used in linkage analyses to identify IBD segments. Here, alternative measures of inbreeding/relationship were used to manage genetic diversity in genomic optimal contribution (GOC) selection schemes. Contrary to classic inbreeding theory, it was found that drift and homozygosity-based inbreeding could differ substantially in GOC schemes unless diversity management was based upon IBD. When using a homozygosity-based measure of relationship, the inbreeding management resulted in allele frequency changes toward 0.5 giving a low rate of increase in homozygosity for the panel used for management, but not for unmanaged neutral loci, at the expense of a high genetic drift. When genomic relationship matrices were based on drift, following VanRaden and as in GCTA, drift was low at the expense of a high rate of increase in homozygosity. The use of IBD-based relationship matrices for inbreeding management limited both drift and the homozygosity-based rate of inbreeding to their target values. Genetic improvement per percent of inbreeding was highest when GOC used IBD-based relationships irrespective of the inbreeding measure used. Genomic relationships based on runs of homozygosity resulted in very high initial improvement per percent of inbreeding, but also in substantial discrepancies between drift and homozygosity-based rates of inbreeding, and resulted in a drift that exceeded its target value. The discrepancy between drift and homozygosity-based rates of inbreeding was caused by a covariance between initial allele frequency and the subsequent change in frequency, which becomes stronger when using data from whole genome sequence.

12.
Front Genet ; 11: 345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425971

RESUMO

We tested the consequences of using alternative genomic relationship matrices to predict genomic breeding values (GEBVs) and control of coancestry in optimum contribution selection, where the relationship matrix used to calculate GEBVs was not necessarily the same as that used to control coancestry. A stochastic simulation study was carried out to investigate genetic gain and true genomic inbreeding in breeding schemes that applied genomic optimum contribution selection (GOCS) with different genomic relationship matrices. Three genomic-relationship matrices were used to predict the GEBVs based on three information sources: markers (G M), QTL (G Q ), and markers and QTL (G A). Strictly, G Q is not possible to implement in practice since we do not know the quantitative trait loci (QTL) positions, but more and more information is becoming available especially about the largest QTL. Two genomic-relationship matrices were used to control coancestry: G M and G A. Three genetic architectures were simulated: with 7702, 1000, and 500 QTLs together with 54,218 markers. Selection was for a single trait with heritability 0.2. All selection candidates were phenotyped and genotyped before selection. With 7702 QTL, there were no significant differences in rates of genetic gain at the same rate of true inbreeding using different genomic relationship matrices in GOCS. However, as the number of QTLs was reduced to 1000, prediction of GEBVs using a genomic relationship matrix constructed based on G Q and control of coancestry using G M realized 29.7% higher genetic gain than using G M for both prediction and control of coancestry. Forty-three percent of this increased rate of genetic gain was due to increased accuracies of GEBVs. These findings indicate that with large numbers of QTL, it is not critical what information, i.e., markers or QTL, is used to construct genomic-relationship matrices. However, it becomes critical with small numbers of QTL. This highlights the importance of using genomic-relationship matrices that focus on QTL regions for GEBV estimation when the number of QTL is small in GOCS. Relationships used to control coancestry are preferably based on marker data.

13.
J Anim Breed Genet ; 137(4): 384-394, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32236991

RESUMO

This study tested and compared different implementation strategies for genomic selection for Norwegian White Sheep, aiming to increase genetic gain for maternal traits. These strategies were evaluated for their genetic gain ingrowth, carcass and maternal traits, total genetic gain, a weighted sum of the gain in each trait and rates of inbreeding through a full-scale stochastic simulation. Results showed genomic selection schemes to increase genetic gain for maternal traits but reduced genetic gain for other traits. This could also be obtained by selecting rams for artificial selection at a higher age. Implementation of genomic selection in the current breeding structure increased genetic gain for maternal traits up to 57%, outcompeted by reducing the generation interval for artificial insemination rams from current 3 to 2 years. Then, total genetic gain for maternal traits increased by 65%-77% and total genetic gain by18%-20%, but at increased rates of inbreeding.


Assuntos
Cruzamento/métodos , Genômica , Seleção Genética , Carneiro Doméstico/genética , Animais , Simulação por Computador , Feminino , Genoma , Endogamia , Masculino , Modelos Genéticos , Fenótipo , Carneiro Doméstico/crescimento & desenvolvimento
14.
Genet Sel Evol ; 52(1): 15, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188420

RESUMO

BACKGROUND: Polyploidy is widespread in animals and especially in plants. Different kinds of ploidies exist, for example, hexaploidy in wheat, octaploidy in strawberries, and diploidy, triploidy, tetraploidy, and pseudo-tetraploidy (partly tetraploid) in fish. Triploid offspring from diploid parents occur frequently in the wild in Atlantic salmon (Salmo salar) and, as with triploidy in general, the triploid individuals are sterile. Induced triploidy in Atlantic salmon is common practice to produce sterile fish. In Norwegian aquaculture, production of sterile triploid fish is an attempt by government and industry to limit genetic introgression between wild and farmed fish. However, triploid fish may have traits and properties that differ from those of diploids. Investigating the genetics behind traits in triploids has proved challenging because genotype calling of genetic markers in triploids is not supported by standard software. Our aim was to develop a method that can be used for genotype calling of genetic markers in triploid individuals. RESULTS: Allele signals were produced for 381 triploid Atlantic salmon offspring using a 56 K Thermo Fisher GeneTitan genotyping platform. Genotypes were successfully called by applying finite normal mixture models to the (transformed) allele signals. Subsets of markers were filtered by quality control statistics for use with downstream analyses. The quality of the called genotypes was sufficient to allow for assignment of diploid parents to the triploid offspring and to discriminate between maternal and paternal parents from autosomal inheritance patterns. In addition, as the maternal inheritance in triploid offspring is identical to gynogenetic inheritance, the maternal recombination pattern for each chromosome could be mapped by using a similar approach as that used in gene-centromere mapping. CONCLUSIONS: We show that calling of dense marker genotypes for triploid individuals is feasible. The resulting genotypes can be used in parentage assignment of triploid offspring to diploid parents, to discriminate between maternal and paternal parents using autosomal inheritance patterns, and to map the maternal recombination pattern using an approach similar to gene-centromere mapping. Genotyping of triploid individuals is important both for selective breeding programs and unravelling the underlying genetics of phenotypes recorded in triploids. In principle, the developed method can be used for genotype calling of other polyploid organisms.


Assuntos
Diploide , Marcadores Genéticos , Genótipo , Salmo salar/genética , Triploidia , Alelos , Animais , Cruzamento , Pesqueiros
15.
Genet Sel Evol ; 52(1): 1, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941436

RESUMO

BACKGROUND: The availability of both pedigree and genomic sources of information for animal breeding and genetics has created new challenges in understanding how they can be best used and interpreted. This study estimated genetic variance components based on genomic information and compared these to the variance components estimated from pedigree alone in a population generated to estimate non-additive genetic variance. Furthermore, the study examined the impact of the assumptions of Hardy-Weinberg equilibrium (HWE) on estimates of genetic variance components. For the first time, the magnitude of inbreeding depression for important commercial traits in Nile tilapia was estimated by using genomic data. RESULTS: The study estimated the non-additive genetic variance in a Nile tilapia population of full-sib families and, when present, it was almost entirely represented by additive-by-additive epistatic variance, although in pedigree studies this non-additive variance is commonly assumed to arise from dominance. For body depth (BD) and body weight at harvest (BWH), the proportion of additive-by-additive epistatic to phenotypic variance was estimated to be 0.15 and 0.17 using genomic data (P < 0.05). In addition, with genomic data, the maternal variance (P < 0.05) for BD, BWH, body length (BL) and fillet weight (FW) explained approximately 10% of the phenotypic variances, which was comparable to pedigree-based estimates. The study also showed the detrimental effects of inbreeding on commercial traits of tilapia, which was estimated to reduce trait values by 1.1, 0.9, 0.4 and 0.3% per 1% increase in the individual homozygosity for FW, BWH, BD and BL, respectively. The presence of inbreeding depression but lack of dominance variance was consistent with an infinitesimal dominance model for the traits. CONCLUSIONS: The benefit of including non-additive genetic effects for genetic evaluations in tilapia breeding schemes is not evident from these findings, but the observed inbreeding depression points to a role for reciprocal recurrent selection. Commercially, this conclusion will depend on the scheme's operational costs and resources. The creation of maternal lines in Tilapia breeding schemes may be a possibility if the variation associated with maternal effects is heritable.


Assuntos
Ciclídeos/genética , Genoma , Carne/análise , Animais , Peso Corporal , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/fisiologia , Feminino , Endogamia , Depressão por Endogamia , Masculino , Herança Materna , Modelos Genéticos , Músculo Esquelético/química , Linhagem , Fenótipo , Característica Quantitativa Herdável
16.
Genet Sel Evol ; 51(1): 76, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842728

RESUMO

BACKGROUND: The main aim of single-step genomic predictions was to facilitate optimal selection in populations consisting of both genotyped and non-genotyped individuals. However, in spite of intensive research, biases still occur, which make it difficult to perform optimal selection across groups of animals. The objective of this study was to investigate whether incomplete genotype datasets with errors could be a potential source of level-bias between genotyped and non-genotyped animals and between animals genotyped on different single nucleotide polymorphism (SNP) panels in single-step genomic predictions. RESULTS: Incomplete and erroneous genotypes of young animals caused biases in breeding values between groups of animals. Systematic noise or missing data for less than 1% of the SNPs in the genotype data had substantial effects on the differences in breeding values between genotyped and non-genotyped animals, and between animals genotyped on different chips. The breeding values of young genotyped individuals were biased upward, and the magnitude was up to 0.8 genetic standard deviations, compared with breeding values of non-genotyped individuals. Similarly, the magnitude of a small value added to the diagonal of the genomic relationship matrix affected the level of average breeding values between groups of genotyped and non-genotyped animals. Cross-validation accuracies and regression coefficients were not sensitive to these factors. CONCLUSIONS: Because, historically, different SNP chips have been used for genotyping different parts of a population, fine-tuning of imputation within and across SNP chips and handling of missing genotypes are crucial for reducing bias. Although all the SNPs used for estimating breeding values are present on the chip used for genotyping young animals, incompleteness and some genotype errors might lead to level-biases in breeding values.


Assuntos
Cruzamento/métodos , Bovinos/genética , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Animais , Viés , Feminino , Genótipo , Fenótipo
17.
Genet Sel Evol ; 51(1): 61, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664896

RESUMO

BACKGROUND: Two distinct populations have been extensively studied in Atlantic cod (Gadus morhua L.): the Northeast Arctic cod (NEAC) population and the coastal cod (CC) population. The objectives of the current study were to identify genomic islands of divergence and to propose an approach to quantify the strength of selection pressures using whole-genome single nucleotide polymorphism (SNP) data. After applying filtering criteria, information on 93 animals (9 CC individuals, 50 NEAC animals and 34 CC × NEAC crossbred individuals) and 3,123,434 autosomal SNPs were used. RESULTS: Four genomic islands of divergence were identified on chromosomes 1, 2, 7 and 12, which were mapped accurately based on SNP data and which extended in size from 11 to 18 Mb. These regions differed considerably between the two populations although the differences in the rest of the genome were small due to considerable gene flow between the populations. The estimates of selection pressures showed that natural selection was substantially more important than genetic drift in shaping these genomic islands. Our data confirmed results from earlier publications that suggested that genomic islands are due to chromosomal rearrangements that are under strong selection and reduce recombination between rearranged and non-rearranged segments. CONCLUSIONS: Our findings further support the hypothesis that selection and reduced recombination in genomic islands may promote speciation between these two populations although their habitats overlap considerably and migrations occur between them.


Assuntos
Gadus morhua/genética , Ilhas Genômicas , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Cromossomos/genética , Fluxo Gênico , Deriva Genética , Recombinação Genética
18.
Sci Rep ; 9(1): 3889, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846825

RESUMO

The aim of this study was to explore how individual differences in content of the omega-3 fatty acids EPA and DHA in skeletal muscle of slaughter-sized Atlantic salmon, are associated with expression of genes involved in key metabolic processes. All experimental fish were fed the same diet throughout life and fasted for 14 days prior to slaughter. Still, there were relatively large individual variations in EPA and DHA content of skeletal muscle. Higher DHA content was concurrent with increased expression of genes of the glycolytic pathway and the production of pyruvate and lactate, whereas EPA was associated with increased expression of pentose phosphate pathway and glycogen breakdown genes. Furthermore, EPA, but not DHA, was associated with expression of genes involved in insulin signaling. Expression of genes specific for skeletal muscle function were positively associated with both EPA and DHA. EPA and DHA were also associated with expression of genes related to eicosanoid and resolvin production. EPA was negatively associated with expression of genes involved in lipid catabolism. Thus, a possible reason why some individuals have a higher level of EPA in the skeletal muscle is that they deposit - rather than oxidize - EPA for energy.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Metabolismo Energético/genética , Metabolismo dos Lipídeos/fisiologia , Músculo Esquelético/metabolismo , Animais , Expressão Gênica , Salmo salar
19.
Genet Sel Evol ; 51(1): 8, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819106

RESUMO

BACKGROUND: In pigs, crossbreeding aims at exploiting heterosis, but heterosis is difficult to quantify. Heterozygosity at genetic markers is easier to measure and could potentially be used as an indicator of heterosis. The objective of this study was to investigate the effect of heterozygosity on various maternal and production traits in purebred and crossbred pigs. The proportion of heterozygosity at genetic markers across the genome for each individual was included in the prediction model as a fixed regression across or within breeds. RESULTS: Estimates of regression coefficients of heterozygosity showed large effects for some traits. For maternal traits, regression coefficient estimates were always in a favourable direction, while for production, meat and slaughter quality traits, they were both favourable and unfavourable. Traits with the largest estimated effects of heterozygosity were total number born, litter weight at 3 weeks, weight at 150 days, and age at 40 kg. Estimates of regression coefficients on heterozygosity differed between breeds. Traits with the largest effect of heterozygosity also showed a significant (P < 0.05) increase in prediction accuracy when heterozygosity was included in the model compared to the model without heterozygosity. CONCLUSIONS: For traits with the largest estimates of regression coefficients on heterozygosity, the inclusion of heterozygosity in the model improved prediction accuracy. Using models that include heterozygosity would result in selecting different animals for breeding, which has the potential to improve genetic gain for these traits. This is most beneficial when crossbreds or several breeds are included in the estimation of breeding values and is relevant to all species, not only pigs. Thus, our results show that including heterozygosity in the model is beneficial for some traits, likely due to dominant gene action.


Assuntos
Heterozigoto , Hibridização Genética , Endogamia , Característica Quantitativa Herdável , Suínos/genética , Animais , Feminino , Vigor Híbrido , Masculino
20.
BMC Genet ; 19(1): 43, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996763

RESUMO

BACKGROUND: Photobacteriosis is an infectious disease developed by a Gram-negative bacterium Photobacterium damselae subsp. piscicida (Phdp), which may cause high mortalities (90-100%) in sea bream. Selection and breeding for resistance against infectious diseases is a highly valuable tool to help prevent or diminish disease outbreaks, and currently available advanced selection methods with the application of genomic information could improve the response to selection. An experimental group of sea bream juveniles was derived from a Ferme Marine de Douhet (FMD, Oléron Island, France) selected line using ~ 109 parents (~ 25 females and 84 males). This group of 1187 individuals represented 177 full-sib families with 1-49 sibs per family, which were challenged with virulent Phdp for a duration of 18 days, and mortalities were recorded within this duration. Tissue samples were collected from the parents and the recorded offspring for DNA extraction, library preparation using 2b-RAD and genotyping by sequencing. Genotypic data was used to develop a linkage map, genome wide association analysis and for the estimation of breeding values. RESULTS: The analysis of genetic variation for resistance against Phdp revealed moderate genomic heritability with estimates of ~ 0.32. A genome-wide association analysis revealed a quantitative trait locus (QTL) including 11 SNPs at linkage group 17 presenting significant association to the trait with p-value crossing genome-wide Bonferroni corrected threshold P ≤ 2.22e-06. The proportion total genetic variance explained by the single top most significant SNP was ranging from 13.28-16.14% depending on the method used to compute the variance. The accuracies of predicting breeding values obtained using genomic vs. pedigree information displayed 19-24% increase when using genomic information. CONCLUSION: The current study demonstrates that SNPs-based genotyping of a sea bream population with 2b-RAD approach is effective at capturing the genetic variation for resistance against Phdp. Prediction accuracies obtained using genomic information were significantly higher than the accuracies obtained using pedigree information which highlights the importance and potential of genomic selection in commercial breeding programs.


Assuntos
Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Photobacterium/patogenicidade , Dourada/genética , Dourada/microbiologia , Animais , Mapeamento Cromossômico , Resistência à Doença/genética , Pesqueiros , França , Ligação Genética , Estudo de Associação Genômica Ampla , Infecções por Bactérias Gram-Negativas/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA