Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 61(4): 356-362, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38050027

RESUMO

BACKGROUND: Pathogenic variants in TTN cause a spectrum of autosomal dominant and recessive cardiovascular, skeletal muscle and cardioskeletal disease with symptom onset across the lifespan. The aim of this study was to characterise the genotypes and phenotypes in a cohort of TTN+paediatric patients. METHODS: Retrospective chart review was performed at four academic medical centres. Patients with pathogenic or truncating variant(s) in TTN and paediatric-onset cardiovascular and/or neuromuscular disease were eligible. RESULTS: 31 patients from 29 families were included. Seventeen patients had skeletal muscle disease, often with proximal weakness and joint contractures, with average symptom onset of 2.2 years. Creatine kinase levels were normal or mildly elevated; electrodiagnostic studies (9/11) and muscle biopsies (11/11) were myopathic. Variants were most commonly identified in the A-band (14/32) or I-band (13/32). Most variants were predicted to be frameshift truncating, nonsense or splice-site (25/32). Seventeen patients had cardiovascular disease (14 isolated cardiovascular, three cardioskeletal) with average symptom onset of 12.9 years. Twelve had dilated cardiomyopathy (four undergoing heart transplant), two presented with ventricular fibrillation arrest, one had restrictive cardiomyopathy and two had other types of arrhythmias. Variants commonly localised to the A-band (8/15) or I-band (6/15) and were predominately frameshift truncating, nonsense or splice-site (14/15). CONCLUSION: Our cohort demonstrates the genotype-phenotype spectrum of paediatric-onset titinopathies identified in clinical practice and highlights the risk of life-threatening cardiovascular complications. We show the difficulties of obtaining a molecular diagnosis, particularly in neuromuscular patients, and bring awareness to the complexities of genetic counselling in this population.


Assuntos
Cardiomiopatia Dilatada , Humanos , Criança , Estudos Retrospectivos , Conectina/genética , Cardiomiopatia Dilatada/genética , Músculo Esquelético/patologia , Fenótipo , Arritmias Cardíacas/patologia
2.
J Neuromuscul Dis ; 11(1): 129-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160362

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a genetic neurodegenerative disorder with onset predominantly in infants and children. In recent years, newborn screening and three treatments, including gene replacement therapy (Onasemnogene abeparvovec-xioi), have become available in the United States, aiding in the diagnosis and treatment of children with SMA. OBJECTIVE: To evaluate parents' experiences with newborn screening and gene replacement therapy and to explore best practices for positive newborn screen disclosure and counseling of families. METHODS: We conducted semi-structured interviews (n = 32) and online surveys (n = 79) of parents whose children were diagnosed with SMA (on newborn screening or symptomatically) and treated with gene replacement therapy. RESULTS: Gene replacement therapy was most parents' first treatment choice, although concerns regarding long term efficacy (65%) and safety (51%) were common. Information provided during the newborn screening disclosure was quite variable. Only 34% of parents reported the information provided was sufficient and expressed need for more information about treatment. Although many parents experienced denial of the diagnosis at initial disclosure, 94% were in favor of inclusion of SMA on newborn screening. Parents were almost universally anxious following diagnosis and over half remained anxious at the time of study participation with uncertainty of the future being a key concern. Many parents had difficulty processing information provided during their first clinic appointment due to its complexity and their emotional state at the time. CONCLUSIONS: Utilizing this data, we provide a recommendation for the information provided in newborn screening disclosure, propose adjustments to education and counseling during the first clinic visit, and bring awareness of parents' mental health difficulties.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Lactente , Recém-Nascido , Criança , Humanos , Estados Unidos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Pais/psicologia , Inquéritos e Questionários , Ansiedade
3.
Muscle Nerve ; 68(6): 833-840, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789688

RESUMO

INTRODUCTION/AIMS: Exome sequencing (ES) has proven to be a valuable diagnostic tool for neuromuscular disorders, which often pose a diagnostic challenge. The aims of this study were to investigate the clinical outcomes associated with utilization of ES in the pediatric neuromuscular clinic and to determine if specific phenotypic features or abnormal neurodiagnostic tests were predictive of a diagnostic result. METHODS: This was a retrospective medical record review of 76 pediatric neuromuscular clinic patients who underwent ES. Based upon clinical assessment prior to ES, patients were divided into two groups: affected by neuromuscular (n = 53) or non-neuromuscular (n = 23) syndromes. RESULTS: A diagnosis was made in 28/76 (36.8%), with 29 unique disorders identified. In the neuromuscular group, a neuromuscular condition was confirmed in 78% of those receiving a genetic diagnosis. Early age of symptom onset was associated with a significantly higher diagnostic yield. The most common reason neuromuscular diagnoses were not detected on prior testing was due to causative genes not being present on disease-specific panels. Changes to medical care were made in 57% of individuals receiving a diagnosis on ES. DISCUSSION: These data further support ES as a powerful diagnostic tool in the pediatric neuromuscular clinic and highlight the advantages of ES over gene panels, including the ability to identify diagnoses regardless of etiology, identify genes newly associated with disease, and identify multiple confounding diagnoses. Rapid and accurate diagnosis by ES can not only end the patient's diagnostic odyssey, but often impacts patients' medical management and genetic counseling of families.


Assuntos
Aconselhamento Genético , Doenças Neuromusculares , Humanos , Criança , Sequenciamento do Exoma , Estudos Retrospectivos , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Testes Genéticos
4.
Artigo em Inglês | MEDLINE | ID: mdl-36307205

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes with a critical role in protein synthesis: charging tRNA molecules with cognate amino acids. Heterozygosity for variants in five genes (AARS1, GARS1, HARS1, WARS1, and YARS1) encoding cytoplasmic, dimeric ARSs have been associated with autosomal dominant neurological phenotypes, including axonal Charcot-Marie-Tooth disease (CMT). Missense variants in the catalytic domain of YARS1 were previously linked to dominant intermediate CMT type C (DI-CMTC). Here, we report a patient with a missense variant of unknown significance predicted to modify residue 308 in the anticodon binding domain of YARS1 (p.Asp308Tyr). Interestingly, p.Asp308Tyr is associated with proximal-predominant motor neuropathy, which has not been reported in patients with pathogenic YARS1 variants. We demonstrate that this allele causes a loss-of-function effect in yeast complementation assays when modeled in YARS1 and the yeast ortholog TYS1; structural modeling of this variant further supports a loss-of-function effect. Taken together, this study raises the possibility that certain YARS1 variants cause proximal-prominent motor neuropathy and indicates that patients with this phenotype should be screened for genetic lesions in YARS1.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Humanos , Saccharomyces cerevisiae , Doença de Charcot-Marie-Tooth/genética , Mutação de Sentido Incorreto/genética , Aminoacil-tRNA Sintetases/genética , Heterozigoto , Mutação
5.
Hum Mutat ; 43(7): 869-876, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332613

RESUMO

Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D. Functional studies using yeast complementation assays support a loss-of-function effect for both variants; however, this did not reveal variable effects that might explain the phenotypic differences. These cases expand the mutational spectrum of GARS1-related disorders and demonstrate phenotypic variability based on the specific substitution at a single residue.


Assuntos
Doença de Charcot-Marie-Tooth , Glicina-tRNA Ligase , Humanos , Doença de Charcot-Marie-Tooth/genética , Códon , Glicina-tRNA Ligase/genética , Mutação , Fenótipo
6.
Front Neurol ; 11: 593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670189

RESUMO

Introduction: Inherited myotonic disorders are genetically heterogeneous and associated with overlapping clinical features of muscle stiffness, weakness, and pain. Data on genotype-phenotype correlations are limited. In this study, clinical features and treatment patterns in genetically characterized myotonic disorders were compared. Methods: A retrospective chart review was completed in patients with genetic variants in CLCN1, SCN4A, DMPK, and CNBP to document clinical signs and symptoms, clinical testing, and antimyotonia medication use. Results: A total of 142 patients (27 CLCN1, 15 SCN4A, 89 DMPK, and 11 CNBP) were reviewed. The frequency of reported symptoms (stiffness, weakness, and pain) and electromyographic spontaneous activity were remarkably similar across genotypes. Most patients were not treated with antimyotonia agents, but those with non-dystrophic disorders were more likely to be on a treatment. Discussion: Among the features reviewed, we did not identify clinical or electrophysiological differences to distinguish CLCN1- and SCN4A-related myotonia. Weakness and pain were more prevalent in non-dystrophic disorders than previously identified. In addition, our results suggest that medical treatments in myotonic disorders may be under-utilized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA