Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 742: 140314, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167293

RESUMO

Anaerobic digestion can produce biogas as an eco-friendly energy source, driven by a microbial community-dependent process and, as such, suffer influences from many biotic and abiotic factors. Understanding the players and how they interact, the mechanisms involved, what the factors are, and how they influence the biogas process and production is an important way to better control it and make it more efficient. Metagenomic approach is a powerful tool to assess microbial diversity and further, allow correlating changes in microbial communities with multiple factors in virtually all environments. In the present study, we used metagenomic approach to assess microbial community structure changes in two biodigesters, differing in their biogas production capacity, architecture, and feed. A total of 1,440,096 reads of the 16S rRNA gene V4 region were obtained and analyzed. The main bacterial phyla were Firmicutes and Bacteroidetes in both biodigesters, but the biodiversity was greater in the Upflow Anaerobic Sludge Blanket (UASB) reactor fed with bovine manure than in the Continuous Stirred Tank Reactor (CSTR) fed with swine manure, which also correlated with an increase in biogas or methane production. Microbial community structure associated with biodigesters changed seasonally and depended on animal growth stage. Random forest algorithm analysis revealed key microbial taxa for each biodigester. Candidatus Cloacomonas, Methanospirillum, and Methanosphaera were the marker taxa for UASB and the archaea groups Methanobrevibacter and Candidatus Methanoplasma were the marker taxa for CSTR. A high abundance of Candidatus Methanoplasma and Marinimicrobia SAR406 clade suggested lower increments in methane production. Network analysis pointed to negative and positive associations and specific key groups, essential in maintaining the anaerobic digestion (AD) process, as being uncultured Parcubacteria bacteria, Candidatus Cloacomonas, and Candidatus Methanoplasma groups, whose functions in AD require investigation.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Animais , Archaea/genética , Biocombustíveis , Bovinos , Metano , RNA Ribossômico 16S , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA