Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Med Educ ; 24(1): 978, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252064

RESUMO

Young healthcare professionals and medical graduates often fall short in the practical experience necessary for handling medical emergencies. This can not only lead to strained feelings of inadequacy and insecurity among future physicians and less experienced healthcare providers in general, but also to detrimental outcomes for patients as emergency medicine demands rapid decision-making with low tolerance for errors. New didactic modalities and approaches may be needed to effectively address this shortcoming. Immersive technologies are powerful novel educational tools with untapped potential in medical training, and may be particularly suitable for simulation trainings in the high-stakes field of emergency medicine.Herein, we systematically explored the educational potential of extended reality (XR) technology, particularly virtual reality (VR), in the management of patients presenting as medical emergencies, combining the use of the STEP-VR application with an untethered hardware setup.Importantly, we aimed at studying multiple, large cohorts of senior medical students involving a total of 529 participants and collecting data over a period of two years. We assessed students' acceptance of the training through a modified questionnaire measuring device handling, content complexity, degree of immersion, learning success, and seminar design.Our results show high, sustained acceptance and ease of use across different student cohorts and subgroups, with most students finding XR/VR engaging and beneficial for acquiring emergency medicine skills. Importantly, the prevalence of simulation sickness was minimal. Moreover, no major effect of the head-mounted displays (HMDs) price range was noted with regard to the learning experience. The results underscore the potential of XR/VR capabilities in effectively enhancing medical education, particularly in areas of high-stakes clinical scenarios and emergency care, by providing realistic and reproducible immersive training environments.In summary, our findings suggest that XR/VR-based training approaches could significantly contribute to preparing future physicians for the complexities of emergency medical care, encouraging the integration of such technologies into medical curricula. However, careful consideration must be given to its suitability for all students and the practical challenges of its implementation, highlighting the need for further research to harness its full potential for medical education.


Assuntos
Medicina de Emergência , Estudantes de Medicina , Realidade Virtual , Humanos , Medicina de Emergência/educação , Estudos Longitudinais , Masculino , Feminino , Treinamento por Simulação , Competência Clínica , Educação de Graduação em Medicina/métodos , Adulto
2.
Cyberpsychol Behav Soc Netw ; 27(6): 363-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513055

RESUMO

Virtual reality (VR) is a potent educational tool with untapped potential in medical training. However, its integration into medical schools faces challenges such as cybersickness and hesitancy among medical students and professionals. Notably, there has been no systematic assessment of the acceptance of medical educational VR applications by both students and educators. In our single-center study, we enrolled 133 medical students and 14 medical educators. Following a practical demonstration of the established VR anatomy application, Sharecare YOU VR, participants completed a self-reporting survey based on the Technology Acceptance Model (TAM), exploring user acceptance of information technologies and focusing on perceived usefulness (PU), perceived ease of use (PEU), and attitude toward using (ATU). We also sought insights into potential future applications of VR in medical education. Our findings indicate a high level of acceptance among medical students and educators upon structured exposure to VR with significantly positive responses for all three TAM variables (PU, PEU, and ATU). Intriguingly, hands-on experience influenced acceptance. Students envisioned VR's benefits in anatomy, surgery, emergency medicine, and communication skill training with patients. Both students and educators believed that VR could enhance traditional approaches and complement the existing curriculum, anticipating improved preparedness for medical students through VR training applications. In conclusion, our results demonstrate the receptivity of both students and educators to immersive technologies, including VR, in medical education. Importantly, the data suggest that the adoption of VR in this field would be welcomed rather than resisted, potentially enhancing students' self-efficacy and enriching the medical school curriculum.


Assuntos
Estudantes de Medicina , Realidade Virtual , Humanos , Estudantes de Medicina/psicologia , Masculino , Feminino , Adulto , Adulto Jovem , Docentes de Medicina/psicologia , Educação Médica/métodos
3.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760754

RESUMO

Porphyromonas gingivalis (P.g.) is a key pathogen involved in periodontal diseases. The aim of this study was to investigate the prevalence and phylogenetic origin of the lipoprotein-gene ragB in its most virulent variant, ragB-1 (co-transcribed with ragA-1 as locus rag-1), in different P.g. strains collected worldwide. A total of 138 P.g. strains were analyzed for the presence of ragB-1 by pooled analysis and subsequently individual PCRs. Sequencing a core fragment of ragB-1 of the individual strains made it possible to carry out a phylogenetic classification using sequence alignment. In total, 22 of the 138 P.g. strains tested positive for ragB-1, corresponding to a prevalence of 16%. The fragment investigated was highly conserved, with variations in the base sequence detected in only three strains (OMI 1072, OMI 1081, and OMI 1074). In two strains, namely OMI 1072 (original name: I-433) and OMI 1081 (original name: I-372), which originate from monkeys, two amino-acid alterations were apparent. Since ragB-1 has also been found in animal strains, it may be concluded that rag-1 was transferred from animals to humans and that this originally virulent variant was weakened by mutations over time so that new, less virulent, adapted commensal versions of rag (rag-2, -3, and -4), with P.g. as the host, evolved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA