Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 23(11): 1700-1711, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26300224

RESUMO

Degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is essential for vision, and studies have implicated altered POS processing in the pathogenesis of some retinal degenerative diseases. Consistent with this concept, a recently established hiPSC-RPE model of inherited macular degeneration, Best disease (BD), displayed reduced rates of POS breakdown. Herein we utilized this model to determine (i) if disturbances in protein degradation pathways are associated with delayed POS digestion and (ii) whether such defect(s) can be pharmacologically targeted. We found that BD hiPSC-RPE cultures possessed increased protein oxidation, decreased free-ubiquitin levels, and altered rates of exosome secretion, consistent with altered POS processing. Application of valproic acid (VPA) with or without rapamycin increased rates of POS degradation in our model, whereas application of bafilomycin-A1 decreased such rates. Importantly, the negative effect of bafilomycin-A1 could be fully reversed by VPA. The utility of hiPSC-RPE for VPA testing was further evident following examination of its efficacy and metabolism in a complementary canine disease model. Our findings suggest that disturbances in protein degradation pathways contribute to the POS processing defect observed in BD hiPSC-RPE, which can be manipulated pharmacologically. These results have therapeutic implications for BD and perhaps other maculopathies.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteólise/efeitos dos fármacos , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Sirolimo/uso terapêutico , Ácido Valproico/uso terapêutico , Distrofia Macular Viteliforme/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Cães , Humanos , Macrolídeos/farmacologia , Modelos Biológicos , Oxirredução , Cultura Primária de Células , Epitélio Pigmentado da Retina/efeitos dos fármacos
2.
Invest Ophthalmol Vis Sci ; 54(10): 6767-78, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24030465

RESUMO

PURPOSE: To determine the effects of serial expansion on the cellular, molecular, and functional properties of human iPS cell (hiPSC)-derived RPE cultures. METHODS: Fibroblasts obtained from four individuals were reprogrammed into hiPSCs and differentiated to RPE cells using previously described methods. Patches of deeply pigmented hiPSC-RPE were dissected, dissociated, and grown in culture until they re-formed pigmented monolayers. Subsequent passages were obtained by repeated dissociation, expansion, and maturation of RPE into pigmented monolayers. Gene and protein expression profiles and morphological and functional characteristics of hiPSC-RPE at different passages were compared with each other and to human fetal RPE (hfRPE). RESULTS: RPE from all four hiPSC lines could be expanded more than 1000-fold when serially passaged as pigmented monolayer cultures. Importantly, expansion of hiPSC-RPE monolayers over the first three passages (P1-P3) resulted in decreased expression of pluripotency and neuroretinal markers and maintenance of characteristic morphological features and gene and protein expression profiles. Furthermore, P1 to P3 hiPSC-RPE monolayers reliably demonstrated functional tight junctions, G-protein-coupled receptor-mediated calcium transients, phagocytosis and degradation of photoreceptor outer segments, and polarized secretion of biomolecules. In contrast, P4 hiPSC-RPE cells failed to form monolayers and possessed altered morphological and functional characteristics and gene expression levels. CONCLUSIONS: Highly differentiated, pigmented hiPSC-RPE monolayers can undergo limited serial expansion while retaining key cytological and functional attributes. However, passaging hiPSC-RPE cultures beyond senescence leads to loss of such features. Our findings support limited, controlled passaging of patient-specific hiPSC-RPE to procure cells needed for in vitro disease modeling, drug screening, and cellular transplantation.


Assuntos
Células-Tronco Embrionárias/citologia , Epitélio Pigmentado da Retina/embriologia , Animais , Western Blotting , Bovinos , Diferenciação Celular , Linhagem Celular , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Fagocitose , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA