Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 27(3): 584-594, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29168252

RESUMO

Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this article, we highlight various peptide-based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases and also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our multiplex substrate profiling by mass spectrometry (MSP-MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, and guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems-level understanding of PTM enzyme regulation and function.


Assuntos
Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Humanos , Espectrometria de Massas , Peptídeo Hidrolases/química , Biblioteca de Peptídeos , Peptídeos/química , Especificidade por Substrato
2.
Anal Chem ; 89(8): 4550-4558, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28322550

RESUMO

The more than 500 protein kinases comprising the human kinome catalyze hundreds of thousands of phosphorylation events to regulate a diversity of cellular functions; however, the extended substrate specificity is still unknown for many of these kinases. We report here a method for quantitatively describing kinase substrate specificity using an unbiased peptide library-based approach with direct measurement of phosphorylation by tandem liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide sequencing (multiplex substrate profiling by mass spectrometry, MSP-MS). This method can be deployed with as low as 10 nM enzyme to determine activity against S/T/Y-containing peptides; additionally, label-free quantitation is used to ascertain catalytic efficiency values for individual peptide substrates in the multiplex assay. Using this approach we developed quantitative motifs for a selection of kinases from each branch of the kinome, with and without known substrates, highlighting the applicability of the method. The sensitivity of this approach is evidenced by its ability to detect phosphorylation events from nanogram quantities of immunoprecipitated material, which allows for wider applicability of this method. To increase the information content of the quantitative kinase motifs, a sublibrary approach was used to expand the testable sequence space within a peptide library of approximately 100 members for CDK1, CDK7, and CDK9. Kinetic analysis of the HIV-1 Tat (transactivator of transcription)-positive transcription elongation factor b (P-TEFb) interaction allowed for localization of the P-TEFb phosphorylation site as well as characterization of the stimulatory effect of Tat on P-TEFb catalytic efficiency.


Assuntos
Fosfopeptídeos/análise , Proteínas Quinases/metabolismo , Espectrometria de Massas em Tandem , Motivos de Aminoácidos , Cromatografia Líquida de Alta Pressão , Quinase 9 Dependente de Ciclina/metabolismo , HIV-1/metabolismo , Humanos , Cinética , Biblioteca de Peptídeos , Fosfopeptídeos/química , Fosforilação , Fator B de Elongação Transcricional Positiva/química , Fator B de Elongação Transcricional Positiva/metabolismo , Especificidade por Substrato , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA