Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Fungal Biol Biotechnol ; 11(1): 11, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127744

RESUMO

BACKGROUND: Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last. RESULTS: This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field. CONCLUSION: Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.

2.
J Microsc ; 294(2): 203-214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511469

RESUMO

Low-vacuum scanning electron microscopy (low-vacuum SEM) is widely used for different applications, such as the investigation of noncoated specimen or the observation of biological materials, which are not stable to high vacuum. In this study, the combination of mineral building materials (concrete or clay plaster) with a biological composite (fungal mycelium composite) by using low-vacuum SEM was investigated. Fungal biotechnology is increasingly gaining prominence in addressing the challenges of sustainability transformation. The construction industry is one of the biggest contributors to the climate crises and, therefore, can highly profit from applications based on regenerative fungal materials. In this work, a fungal mycelium composite is used as alternative to conventional insulating materials like Styrofoam. However, to adapt bio-based products to the construction industry, investigations, optimisations and adaptations to existing solutions are needed. This paper examines the compatibility between fungal mycelium materials with mineral-based materials to demonstrate basic feasibility. For this purpose, fresh and hardened concrete specimens as well as clay plaster samples are combined with growing mycelium from the tinder fungus Fomes fomentarius. The contact zone between the mycelium composite and the mineral building materials is examined by scanning electron microscopy (SEM). The combination of these materials proves to be feasible in general. The use of hardened concrete or clay with living mycelium composite appears to be the favoured variant, as the hyphae can grow into the surface of the building material and thus a layered structure with a stable connection is formed. In order to work with the combination of low-density organic materials and higher-density inorganic materials simultaneously, low-vacuum SEM offers a suitable method to deliver results with reduced effort in preparation while maintaining high capture and magnification quality. Not only are image recordings possible with SE and BSE, but EDX measurements can also be carried out quickly without the influence of a coating. Depending on the signal used, as well as the magnification, image-recording strategies must be adapted. Especially when using SE, an image-integration method was used to reduce the build-up of point charges from the electron beam, which damages the mycelial hyphae. Additionally using different signals during image capture is recommended to confirm acquired information, avoiding misinterpretations.


Assuntos
Minerais , Micélio , Microscopia Eletrônica de Varredura , Vácuo , Argila , Micélio/química , Minerais/análise , Materiais de Construção
3.
Fungal Biol Biotechnol ; 11(1): 3, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468360

RESUMO

BACKGROUND: Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom. RESULTS: In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization. CONCLUSION: This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.

4.
Fungal Biol Biotechnol ; 10(1): 22, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049892

RESUMO

BACKGROUND: To achieve climate neutrality, fundamentally new concepts of circularity need to be implemented by the building sector as it contributes to 40% of anthropogenic CO2 emission. Fungal biotechnology can make a significant contribution here and help eliminate fossil dependency for building material production. Recently, we have shown that the medicinal polypore Fomes fomentarius feeds well on renewable lignocellulosic biomass and produces composite materials that could potentially replace fossil fuel-based expanded polystyrene as insulation material. RESULTS: In this study, we explored the mechanical, physical, and thermal properties of F. fomentarius-based composite materials in more detail and determined key performance parameters that are important to evaluate the usability of F. fomentarius-based composite materials in the construction sector. These parameters were determined according to European standards and included compressive strength, modulus of elasticity, thermal conductivity, water vapour permeability, and flammability of uncompressed composites as well as flexural strength, transverse tensile strength, and water absorption capacity of heat-pressed composites, among others. We could show that uncompressed composites obtained from F. fomentarius and hemp shives display a thermal conductivity of 0.044 W (m K)-1 which is in the range of natural organic fibres. A water vapour permeability of 1.72 and classification into flammability class B1 clearly surpasses fossil-based insulation materials including expanded polystyrene and polyurethane. We could furthermore show that heat-pressing can be used to reliably generate stiff and firm particleboards that have the potential to replace current wood-based particleboards that contain synthetic additives. X-ray microcomputed tomography finally visualized for the first time the growth of hyphae of F. fomentarius on and into the hemp shive substrates and generated high-resolution images of the microstructure of F. fomentarius-based composites. CONCLUSION: This study demonstrates that fungal-based composites produced with F. fomentarius partially meet or even exceed key performance parameters of currently used fossil fuel-based insulation materials and can also be used to replace particleboards.

5.
Front Bioeng Biotechnol ; 11: 1279146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869709

RESUMO

Introduction: Thermothelomyces thermophilus, formerly known as Myceliophthora thermophila, is used in industry to produce lignocellulolytic enzymes and heterologous proteins. However, the transcriptional network driving the expression of these proteins remains elusive. As a first step to systematically uncover this network, we investigated growth, protein secretion, and transcriptomic fingerprints of strains deficient in the cellulolytic transcriptional regulators Clr1, Clr2, and Clr4, respectively. Methods: The genes encoding Clr1, Clr2, and Clr4 were individually deleted using split marker or the CRISPR/Cas12a technology and the resulting strains as well as the parental strain were cultivated in bioreactors under chemostat conditions using glucose as the carbon source. During steady state conditions, cellulose was added instead of glucose to study the genetic and cellular responses in all four strains to the shift in carbon source availability. Results: Notably, the clr1 and clr2 deletion strains were unable to continue to grow on cellulose, demonstrating a key role of both regulators in cellulose catabolism. Their transcriptomic fingerprints uncovered not only a lack of cellulase gene expression but also reduced expression of genes predicted to encode hemicellulases, pectinases, and esterases. In contrast, the growth of the clr4 deletion strain was very similar compared to the parental strain. However, a much stronger expression of cellulases, hemicellulases, pectinases, and esterases was observed. Discussion: The data gained in this study suggest that both transcriptional regulators Clr1 and Clr2 activate the expression of genes predicted to encode cellulases as well as hemicellulases, pectinases, and esterases. They further suggest that Clr1 controls the basal expression of cellulases and initiates the main lignocellulolytic response to cellulose via induction of clr2 expression. In contrast, Clr4 seems to act as a repressor of the lignocellulolytic response presumably via controlling clr2 expression. Comparative transcriptomics in all four strains revealed potentially new regulators in carbohydrate catabolism and lignocellulolytic enzyme expression that define a candidate gene list for future analyses.

6.
Front Microbiol ; 14: 1233740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547691

RESUMO

Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (PyoFun) in A. niger by inducing overproduction of the pigment using L-tyrosine in a recombinant ΔhmgA mutant strain (OS4.3). The PyoFun pigment was characterized using three spectroscopic methods, and its antioxidant properties were assessed using a DPPH-assay. Additionally, we evaluated the protective effect of PyoFun against non-ionizing radiation (monochromatic UV-C) and compared its efficacy to a synthetically produced control pyomelanin (PyoSyn). The results confirmed successful production of PyoFun in A. niger through inducible overproduction. Characterization using spectroscopic methods confirmed the presence of PyoFun, and the DPPH-assay demonstrated its strong antioxidant properties. Moreover, PyoFun exhibited a highly protective effect against radiation-induced stress, surpassing the protection provided by PyoSyn. The findings of this study suggest that PyoFun has significant potential as a biological shield against harmful radiation. Notably, PyoFun is synthesized extracellularly, differing it from other fungal melanins (such as L-DOPA- or DHN-melanin) that require cell lysis for pigment purification. This characteristic makes PyoFun a valuable resource for biotechnology, biomedicine, and the space industry. However, further research is needed to evaluate its protective effect in a dried form and against ionizing radiation.

7.
J Colloid Interface Sci ; 652(Pt A): 1074-1084, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647716

RESUMO

Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of ß-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the ß-lactoglobulin adsorption and its effect on the premix membrane emulsification of ß-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed ß-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of ß-lactoglobulin) and the treatment of the silica surface (hydrophilization). The ß-lactoglobulin adsorption is driven by attractive electrostatic interactions between positively charged amino acid residues, i.e., lysin and negatively charged silanol groups, and is stabilized by hydrophobic interactions. The strong negative charges of the treated silica surfaces result in a high apparent layer thickness of ß-lactoglobulin. Although the conformation of the adsorbed ß-lactoglobulin layer varies with membrane treatment and the solvent properties, the ß-lactoglobulin adsorption offsets the effect of hydrophilization of the membrane so that the surface energies after ß-lactoglobulin adsorption are comparable. The resulting droplet size distribution of oil-in-water emulsions produced by premix membrane emulsification are similar for treated and untreated silica surfaces.


Assuntos
Lactoglobulinas , Água , Adsorção , Lactoglobulinas/química , Emulsões/química , Solventes , Água/química
8.
Biotechnol Bioeng ; 120(11): 3244-3260, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475650

RESUMO

Filamentous fungi produce a wide range of relevant biotechnological compounds. The close relationship between fungal morphology and productivity has led to a variety of analytical methods to quantify their macromorphology. Nevertheless, only a µ-computed tomography (µ-CT) based method allows a detailed analysis of the 3D micromorphology of fungal pellets. However, the low sample throughput of a laboratory µ-CT limits the tracking of the micromorphological evolution of a statistically representative number of submerged cultivated fungal pellets over time. To meet this challenge, we applied synchrotron radiation-based X-ray microtomography at the Deutsches Elektronen-Synchrotron [German Electron Synchrotron Research Center], resulting in 19,940 3D analyzed individual fungal pellets that were obtained from 26 sampling points during a 48 h Aspergillus niger submerged batch cultivation. For each of the pellets, we were able to determine micromorphological properties such as number and density of spores, tips, branching points, and hyphae. The computed data allowed us to monitor the growth of submerged cultivated fungal pellets in highly resolved 3D for the first time. The generated morphological database from synchrotron measurements can be used to understand, describe, and model the growth of filamentous fungal cultivations.

9.
Biotechnol Biofuels Bioprod ; 16(1): 95, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268954

RESUMO

BACKGROUND: Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood. RESULTS: In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth. By harnessing gene coexpression network data, we bioinformatically predicted six morphology and productivity associated 'morphogenes', and placed them under control of a conditional Tet-on gene switch using CRISPR-Cas genome editing. Strains were phenotypically screened on solid and liquid media following titration of morphogene expression, generating quantitative measurements of growth rate, filamentous morphology, response to various abiotic perturbations, Euclidean parameters of submerged macromorphologies, and total secreted protein. These data were built into a multiple linear regression model, which identified radial growth rate and fitness under heat stress as positively correlated with protein titres. In contrast, diameter of submerged pellets and cell wall integrity were negatively associated with productivity. Remarkably, our model predicts over 60% of variation in A. niger secreted protein titres is dependent on these four variables, suggesting that they play crucial roles in productivity and are high priority processes to be targeted in future engineering programs. Additionally, this study suggests A. niger dlpA and crzA genes are promising new leads for enhancing protein titres during fermentation. CONCLUSIONS: Taken together this study has identified several potential genetic leads for maximizing protein titres, delivered a suite of chassis strains with user controllable macromorphologies during pilot fermentation studies, and has quantified four crucial factors which impact secreted protein titres in A. niger.

10.
Fungal Biol Biotechnol ; 10(1): 9, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072857
11.
J Nat Prod ; 86(4): 782-790, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36847642

RESUMO

Emerging fungal infections require new, more efficient antifungal agents and therapies. AFP, a protein from Aspergillus giganteus with four disulfide bonds, is a promising candidate because it selectively inhibits the growth of filamentous fungi. In this work, the reduced form of AFP was prepared using native chemical ligation. The native protein was synthesized via oxidative folding with uniform protection for cysteine thiols. AFP's biological activity depends heavily on the pattern of natural disulfide bonds. Enzymatic digestion and MS analysis provide proof for interlocking disulfide topology (abcdabcd) that was previously assumed. With this knowledge, a semi-orthogonal thiol protection method was designed. By following this strategy, out of a possible 105, only 6 disulfide isomers formed and 1 of them proved to be identical with the native protein. This approach allows the synthesis of analogs for examining structure-activity relationships and, thus, preparing AFP variants with higher antifungal activity.


Assuntos
Antifúngicos , Proteínas Fúngicas , Antifúngicos/química , Proteínas Fúngicas/metabolismo , alfa-Fetoproteínas , Dissulfetos
12.
Front Microbiol ; 13: 975763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212831

RESUMO

The biotechnology- and medicine-relevant fungus Aspergillus niger is a common colonizer of indoor habitats such as the International Space Station (ISS). Being able to colonize and biodegrade a wide range of surfaces, A. niger can ultimately impact human health and habitat safety. Surface contamination relies on two key-features of the fungal colony: the fungal spores, and the vegetative mycelium, also known as biofilm. Aboard the ISS, microorganisms and astronauts are shielded from extreme temperatures and radiation, but are inevitably affected by spaceflight microgravity. Knowing how microgravity affects A. niger colony growth, in particular regarding the vegetative mycelium (biofilm) and spore production, will help prevent and control fungal contaminations in indoor habitats on Earth and in space. Because fungal colonies grown on agar can be considered analogs for surface contamination, we investigated A. niger colony growth on agar in normal gravity (Ground) and simulated microgravity (SMG) conditions by fast-clinorotation. Three strains were included: a wild-type strain, a pigmentation mutant (ΔfwnA), and a hyperbranching mutant (ΔracA). Our study presents never before seen scanning electron microscopy (SEM) images of A. niger colonies that reveal a complex ultrastructure and biofilm architecture, and provide insights into fungal colony development, both on ground and in simulated microgravity. Results show that simulated microgravity affects colony growth in a strain-dependent manner, leading to thicker biofilms (vegetative mycelium) and increased spore production. We suggest that the Rho GTPase RacA might play a role in A. niger's adaptation to simulated microgravity, as deletion of ΔracA leads to changes in biofilm thickness, spore production and total biomass. We also propose that FwnA-mediated melanin production plays a role in A. niger's microgravity response, as ΔfwnA mutant colonies grown under SMG conditions showed increased colony area and spore production. Taken together, our study shows that simulated microgravity does not inhibit A. niger growth, but rather indicates a potential increase in surface-colonization. Further studies addressing fungal growth and surface contaminations in spaceflight should be conducted, not only to reduce the risk of negatively impacting human health and spacecraft material safety, but also to positively utilize fungal-based biotechnology to acquire needed resources in situ.

13.
Front Microbiol ; 13: 812903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531270

RESUMO

Antimicrobial peptides (AMPs) are naturally produced by pro- and eukaryotes and are promising alternatives to antibiotics to fight multidrug-resistant microorganisms. However, despite thousands of AMP entries in respective databases, predictions about their structure-activity relationships are still limited. Similarly, common or dissimilar properties of AMPs that have evolved in different taxonomic groups are nearly unknown. We leveraged data entries for 10,987 peptides currently listed in the three antimicrobial peptide databases APD, DRAMP and DBAASP to aid structure-activity predictions. However, this number reduced to 3,828 AMPs that we could use for computational analyses, due to our stringent quality control criteria. The analysis uncovered a strong bias towards AMPs isolated from amphibians (1,391), whereas only 35 AMPs originate from fungi (0.9%), hindering evolutionary analyses on the origin and phylogenetic relationship of AMPs. The majority (62%) of the 3,828 AMPs consists of less than 40 amino acids but with a molecular weight higher than 2.5 kDa, has a net positive charge and shares a hydrophobic character. They are enriched in glycine, lysine and cysteine but are depleted in glutamate, aspartate and methionine when compared with a peptide set of the same size randomly selected from the UniProt database. The AMPs that deviate from this pattern (38%) can be found in different taxonomic groups, in particular in Gram-negative bacteria. Remarkably, the γ-core motif claimed so far as a unifying structural signature in cysteine-stabilised AMPs is absent in nearly 90% of the peptides, questioning its relevance as a prerequisite for antimicrobial activity. The disclosure of AMPs pattern and their variation in producing organism groups extends our knowledge of the structural diversity of AMPs and will assist future peptide screens in unexplored microorganisms. Structural design of peptide antibiotic drugs will benefit using natural AMPs as lead compounds. However, a reliable and statistically balanced database is missing which leads to a large knowledge gap in the AMP field. Thus, thorough evaluation of the available data, mitigation of biases and standardised experimental setups need to be implemented to leverage the full potential of AMPs for drug development programmes in the clinics and agriculture.

14.
Biotechnol Bioeng ; 119(8): 2182-2195, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35477834

RESUMO

Many filamentous fungi are exploited as cell factories in biotechnology. Cultivated under industrially relevant submerged conditions, filamentous fungi can adopt different macromorphologies ranging from dispersed mycelia over loose clumps to pellets. Central to the development of a pellet morphology is the agglomeration of spores after inoculation followed by spore germination and outgrowth into a pellet population, which is usually very heterogeneous. As the dynamics underlying population heterogeneity is not yet fully understood, we present here a new high-throughput image analysis pipeline based on stereomicroscopy to comprehensively assess the developmental program starting from germination up to pellet formation. To demonstrate the potential of this pipeline, we used data from 44 sampling times harvested during a 48 h submerged batch cultivation of the fungal cell factory Aspergillus niger. The analysis of up to 1700 spore agglomerates and 1500 pellets per sampling time allowed the precise tracking of the morphological development of the overall culture. The data gained were used to calculate size distributions and area fractions of spores, spore agglomerates, spore agglomerates within pellets, pellets, and dispersed mycelia. This approach eventually enables the quantification of culture heterogeneities and pellet breakage.


Assuntos
Aspergillus niger , Microscopia , Aspergillus , Esporos Fúngicos
15.
Fungal Biol Biotechnol ; 9(1): 5, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232493

RESUMO

The Special Issue "Connecting materials science with fungal biology" celebrates recent breakthroughs in the fabrication of fungal-based materials, all of which have been made possible by the interdisciplinary and transdisciplinary collaboration of fungal biologists and biotechnologists with artists, designers, materials scientists, and architects. It features conceptual considerations and latest developments of these joint research efforts and the paradigm shift that is involved. The aim of this collection of twelve papers is to highlight the infinite possibilities for the development of innovative fungal-based materials which can be realized through integrating the knowledge and methods from different disciplines.

16.
ACS Omega ; 7(5): 4158-4169, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155910

RESUMO

Lab-cultivated mycelia of Fomes fomentarius (FF), grown on a solid lignocellulose medium (FF-SM) and a liquid glucose medium (FF-LM), and naturally grown fruiting bodies (FF-FB) were studied as biosorbents for the removal of organic dyes methylene blue and Congo red (CR). Both the chemical and microstructural differences were revealed using X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, zeta potential analysis, and scanning electron microscopy, illuminating the superiority of FF-LM and FF-SM over FF-FB in dye adsorption. The adsorption process of CR on FF-LM and FF-SM is best described by the Redlich-Peterson model with ß constants close to 1, that is, approaching the monolayer Langmuir model, which reach maximum adsorption capacities of 48.8 and 13.4 mg g-1, respectively, in neutral solutions. Adsorption kinetics follow the pseudo-second-order model where chemisorption is the rate-controlling step. While the desorption efficiencies were low, adsorption performances were preserved and even enhanced under simulated dye effluent conditions. The results suggest that F. fomentarius can be considered an attractive biosorbent in industrial wastewater treatment and that its cultivation conditions can be specifically tailored to tune its cell wall composition and adsorption performance.

17.
Microb Biotechnol ; 15(6): 1867-1882, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35213792

RESUMO

Aspergillus niger, an important industrial workhorse for citric acid production, is characterized by polar hyphal growth with complex pelleted, clumped or dispersed macromorphologies in submerged culture. Although organic acid titres are dramatically impacted by these growth types, studies that assess productivity and macromorphological changes are limited. Herein, we functionally analysed the role of the protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) signalling cascade during fermentation by disrupting and conditionally expressing the pkaC gene. pkaC played multiple roles during hyphal, colony and conidiophore growth. By overexpressing pkaC, we could concomitantly modify hyphal growth at the pellet surface and improve citric acid titres up to 1.87-fold. By quantitatively analysing hundreds of pellets during pilot fermentation experiments, we provide the first comprehensive correlation between A. niger pellet surface morphology and citric acid production. Finally, by intracellular metabolomics analysis and weighted gene coexpression network analysis (WGCNA) following titration of pkaC expression, we unveil the metabolomic and transcriptomic basis underpin hyperproductivity and pellet growth. Taken together, this study confirms pkaC as hub regulator linking submerged macromorphology and citric acid production and provides high-priority genetic leads for future strain engineering programmes.


Assuntos
Aspergillus niger , Ácido Cítrico , Aspergillus niger/genética , Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Fermentação
18.
Fungal Biol Biotechnol ; 9(1): 4, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209941

RESUMO

BACKGROUND: Filamentous fungi of the phylum Basidiomycota are considered as an attractive source for the biotechnological production of composite materials. The ability of many basidiomycetes to accept residual lignocellulosic plant biomass from agriculture and forestry such as straw, shives and sawdust as substrates and to bind and glue together these otherwise loose but reinforcing substrate particles into their mycelial network, makes them ideal candidates to produce biological composites to replace petroleum-based synthetic plastics and foams in the near future. RESULTS: Here, we describe for the first time the application potential of the tinder fungus Fomes fomentarius for lab-scale production of mycelium composites. We used fine, medium and coarse particle fractions of hemp shives and rapeseed straw to produce a set of diverse composite materials and show that the mechanical materials properties are dependent on the nature and particle size of the substrates. Compression tests and scanning electron microscopy were used to characterize composite material properties and to model their compression behaviour by numerical simulations. Their properties were compared amongst each other and with the benchmark expanded polystyrene (EPS), a petroleum-based foam used for thermal isolation in the construction industry. Our analyses uncovered that EPS shows an elastic modulus of 2.37 ± 0.17 MPa which is 4-times higher compared to the F. fomentarius composite materials whereas the compressive strength of 0.09 ± 0.003 MPa is in the range of the fungal composite material. However, when comparing the ability to take up compressive forces at higher strain values, the fungal composites performed better than EPS. Hemp-shive based composites were able to resist a compressive force of 0.2 MPa at 50% compression, rapeseed composites 0.3 MPa but EPS only 0.15 MPa. CONCLUSION: The data obtained in this study suggest that F. fomentarius constitutes a promising cell factory for the future production of fungal composite materials with similar mechanical behaviour as synthetic foams such as EPS. Future work will focus on designing materials characteristics through optimizing substrate properties, cultivation conditions and by modulating growth and cell wall composition of F. fomentarius, i.e. factors that contribute on the meso- and microscale level to the composite behaviour.

19.
Fungal Biol Biotechnol ; 9(1): 1, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012670

RESUMO

BACKGROUND: Biological pigmentation is one of the most intriguing traits of many fungi. It holds significance to scientists, as a sign of biochemical metabolism and organism-environment interaction, and to artists, as the source of natural colors that capture the beauty of the microbial world. Furthermore, the functional roles and aesthetic appeal of biological pigmentation may be a path to inspiring human empathy for microorganisms, which is key to understanding and preserving microbial biodiversity. A project focused on cross-species empathy was initiated and conducted as part of an artist-in-residence program in 2021. The aim of this residency is to bridge the current divide between science and art through interdisciplinary practice focused on fungi. RESULTS: The residency resulted in multiple products that are designed for artistic and scientific audiences with the central theme of biological pigmentation in fungi and other microorganisms. The first product is a video artwork that focuses on Aspergillus niger as a model organism that produces melanin pigment in a biosynthetic process similar to that of humans. The growth and morphology of this commonplace organism are displayed through video, photo, animation, and time-lapse footage, inviting the viewer to examine the likenesses and overlaps between humans and fungi. The second product is The Living Color Database, an online compendium of biological colors for scientists, artists, and designers. It links organisms across the tree of life, focusing on fungi, bacteria, and archaea, and the colors they express through biological pigmentation. Each pigment is represented in terms of its chemistry, its related biosynthesis, and its color expressions according to different indices: HEX, RGB, and Pantone. It is available at color.bio. CONCLUSIONS: As fungal biotechnology continues to mature into new application areas, it is as important as ever that there is human empathy for these organisms to promote the preservation and appreciation of fungal biodiversity. The products presented here provide paths for artists, scientists, and designers to understand microorganisms through the lens of color, promoting interspecies empathy through research, teaching, and practice.

20.
J Fungi (Basel) ; 8(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35050015

RESUMO

Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans. Although a link between mVOCs and respiratory health symptoms in humans has been demonstrated by numerous studies, standardized test systems for evaluating the toxicity of mVOCs are currently not available. Also, mVOCs are not considered systematically at regulatory level. We therefore performed a literature survey of existing in vitro exposure systems and lung models in order to summarize the state-of-the-art and discuss their suitability for understanding the potential toxic effects of mVOCs on human health. We present a review of submerged cultivation, air-liquid-interface (ALI), spheroids and organoids as well as multi-organ approaches and compare their advantages and disadvantages. Furthermore, we discuss the limitations of mVOC fingerprinting. However, given the most recent developments in the field, we expect that there will soon be adequate models of the human respiratory tract and its response to mVOCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA