Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 12(1): 320, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941129

RESUMO

Bioinformatics and network studies have identified the immediate early gene transcription factor early growth response 3 (EGR3) as a master regulator of genes differentially expressed in the brains of patients with neuropsychiatric illnesses ranging from schizophrenia and bipolar disorder to Alzheimer's disease. However, few studies have identified and validated Egr3-dependent genes in the mammalian brain. We have previously shown that Egr3 is required for stress-responsive behavior, memory, and hippocampal long-term depression in mice. To identify Egr3-dependent genes that may regulate these processes, we conducted an expression microarray on hippocampi from wildtype (WT) and Egr3-/- mice following electroconvulsive seizure (ECS), a stimulus that induces maximal expression of immediate early genes including Egr3. We identified 69 genes that were differentially expressed between WT and Egr3-/- mice one hour following ECS. Bioinformatic analyses showed that many of these are altered in, or associated with, schizophrenia, including Mef2c and Calb2. Enrichr pathway analysis revealed the GADD45 (growth arrest and DNA-damage-inducible) family (Gadd45b, Gadd45g) as a leading group of differentially expressed genes. Together with differentially expressed genes in the AP-1 transcription factor family genes (Fos, Fosb), and the centromere organization protein Cenpa, these results revealed that Egr3 is required for activity-dependent expression of genes involved in the DNA damage response. Our findings show that EGR3 is critical for the expression of genes that are mis-expressed in schizophrenia and reveal a novel requirement for EGR3 in the expression of genes involved in activity-induced DNA damage response.


Assuntos
Transtorno Bipolar , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Esquizofrenia , Animais , Antígenos de Diferenciação , Dano ao DNA , Proteína 3 de Resposta de Crescimento Precoce/genética , Mamíferos/metabolismo , Camundongos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Fatores de Transcrição/genética
2.
Mol Psychiatry ; 27(3): 1599-1610, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35001075

RESUMO

Serotonin 2A receptors (5-HT2ARs) mediate the hallucinogenic effects of psychedelic drugs and are a key target of the leading class of medications used to treat psychotic disorders. These findings suggest that dysfunction of 5-HT2ARs may contribute to the symptoms of schizophrenia, a mental illness characterized by perceptual and cognitive disturbances. Indeed, numerous studies have found that 5-HT2ARs are reduced in the brains of individuals with schizophrenia. However, the mechanisms that regulate 5-HT2AR expression remain poorly understood. Here, we show that a physiologic environmental stimulus, sleep deprivation, significantly upregulates 5-HT2AR levels in the mouse frontal cortex in as little as 6-8 h (for mRNA and protein, respectively). This induction requires the activity-dependent immediate early gene transcription factor early growth response 3 (Egr3) as it does not occur in Egr3 deficient (-/-) mice. Using chromatin immunoprecipitation, we show that EGR3 protein binds to the promoter of Htr2a, the gene that encodes the 5-HT2AR, in the frontal cortex in vivo, and drives expression of in vitro reporter constructs via two EGR3 binding sites in the Htr2a promoter. These results suggest that EGR3 directly regulates Htr2a expression, and 5-HT2AR levels, in the frontal cortex in response to physiologic stimuli. Analysis of publicly available post-mortem gene expression data revealed that both EGR3 and HTR2A mRNA are reduced in the prefrontal cortex of schizophrenia patients compared to controls. Together these findings suggest a mechanism by which environmental stimuli alter levels of a brain receptor that may mediate the symptoms, and treatment, of mental illness.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce , Receptor 5-HT2A de Serotonina , Privação do Sono , Animais , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Lobo Frontal , Genes Precoces , Camundongos , RNA Mensageiro , Receptor 5-HT2A de Serotonina/genética , Serotonina , Privação do Sono/genética
3.
J Parkinsons Dis ; 11(s2): S189-S197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092656

RESUMO

The protein alpha-Synuclein (α-Syn) is a key contributor to the etiology of Parkinson's disease (PD) with aggregation, trans-neuronal spread, and/or depletion of α-Syn being viewed as crucial events in the molecular processes that result in neurodegeneration. The exact succession of pathological occurrences that lead to neuronal death are still largely unknown and are likely to be multifactorial in nature. Despite this unknown, α-Syn dose and stability, autophagy-lysosomal dysfunction, and inflammation, amongst other cellular impairments, have all been described as participatory events in the neurodegenerative process. To that end, in this review we discuss the logical points for gene therapy to intervene in α-Syn-mediated disease and review the preclinical body of work where gene therapy has been used, or could conceptually be used, to ameliorate α-Syn induced neurotoxicity. We discuss gene therapy in the traditional sense of modulating gene expression, as well as the use of viral vectors and nanoparticles as methods to deliver other therapeutic modalities.


Assuntos
Doença de Parkinson , Sinucleinopatias , Terapia Genética , Humanos , Lisossomos , Doença de Parkinson/genética , Doença de Parkinson/terapia , alfa-Sinucleína/genética
4.
Front Behav Neurosci ; 12: 92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867393

RESUMO

Early growth response 3 (Egr3) is an immediate early gene (IEG) that is regulated downstream of a cascade of genes associated with risk for psychiatric disorders, and dysfunction of Egr3 itself has been implicated in schizophrenia, bipolar disorder, and depression. As an activity-dependent transcription factor, EGR3 is poised to regulate the neuronal expression of target genes in response to environmental events. In the current study, we sought to identify a downstream target of EGR3 with the goal of further elucidating genes in this biological pathway relevant for psychiatric illness risk. We used electroconvulsive stimulation (ECS) to induce high-level expression of IEGs in the brain, and conducted expression microarray to identify genes differentially regulated in the hippocampus of Egr3-deficient (-/-) mice compared to their wildtype (WT) littermates. Our results replicated previous work showing that ECS induces high-level expression of the brain-derived neurotrophic factor (Bdnf) in the hippocampus of WT mice. However, we found that this induction is absent in Egr3-/- mice. Quantitative real-time PCR (qRT-PCR) validated the microarray results (performed in males) and replicated the findings in two separate cohorts of female mice. Follow-up studies of activity-dependent Bdnf exons demonstrated that ECS-induced expression of both exons IV and VI requires Egr3. In situ hybridization demonstrated high-level cellular expression of Bdnf in the hippocampal dentate gyrus following ECS in WT, but not Egr3-/-, mice. Bdnf promoter analysis revealed eight putative EGR3 binding sites in the Bdnf promoter, suggesting a mechanism through which EGR3 may directly regulate Bdnf gene expression. These findings do not appear to result from a defect in the development of hippocampal neurons in Egr3-/- mice, as cell counts in tissue sections stained with anti-NeuN antibodies, a neuron-specific marker, did not differ between Egr3-/- and WT mice. In addition, Sholl analysis and counts of dendritic spines in golgi-stained hippocampal sections revealed no difference in dendritic morphology or synaptic spine density in Egr3-/-, compared to WT, mice. These findings indicate that Egr3 is required for ECS-induced expression of Bdnf in the hippocampus and suggest that Bdnf may be a downstream gene in our previously identified biologically pathway for psychiatric illness susceptibility.

5.
Plants (Basel) ; 4(3): 678-90, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27135346

RESUMO

Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

6.
Dalton Trans ; 42(9): 3043-9, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22975842

RESUMO

Human sulfite oxidase (hSO), an essential molybdoheme enzyme, catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic cycle includes two, one-electron intramolecular electron transfers (IET) between the molybdenum (Mo) and the heme domains. Rapid IET rates are ascribed to conformational changes that bring the two domains into close proximity to one another. Previous studies of hSO have focused on the roles of conserved residues near the Mo active site and on the tether that links the two domains. Here four aromatic surface residues on the heme domain (phenylalanine 57 (F57), phenylalanine 79 (F79), tyrosine 83 (Y83), and histidine 90 (H90)) have been mutated, and their involvement in IET rates, the heme midpoint potential, and the catalytic activity of hSO have been investigated using laser flash photolysis, spectroelectrochemistry, and steady-state kinetics, respectively. The results indicate that the size and hydrophobicity of F57 play an important role in modulating the heme potential and that F57 also affects the IET rates. The data also suggest that important interactions of H90 with a heme propionate group destabilize the Fe(III) state of the heme. The positive charge on H90 at pH ≤ 7.0 may decrease the electrostatic interaction between the Mo and heme domains, thereby decreasing the IET rates of wt hSO at low pH. Lastly, mutations of F79 and Y83, which are located on the surface of the heme domain, but not in direct contact with the heme or the propionate groups, have little effect on either IET or the heme potential.


Assuntos
Heme , Mutação , Sulfito Oxidase/química , Sulfito Oxidase/metabolismo , Eletroquímica , Transporte de Elétrons , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fotólise , Estrutura Terciária de Proteína , Sulfito Oxidase/genética
7.
J Biol Inorg Chem ; 17(3): 345-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22057690

RESUMO

Sulfite oxidase (SO) is a molybdoheme enzyme that is important in sulfur catabolism, and mutations in the active site region are known to cause SO deficiency disorder in humans. This investigation probes the effects that mutating aromatic residues (Y273, W338, and H337) in the molybdenum-containing domain of human SO have on both the intramolecular electron transfer (IET) rate between the molybdenum and iron centers using laser flash photolysis and on catalytic turnover via steady-state kinetic analysis. The W338 and H337 mutants show large decreases in their IET rate constants (k (ET)) relative to the wild-type values, suggesting the importance of these residues for rapid IET. In contrast, these mutants are catalytically competent and exhibit higher k (cat) values than their corresponding k (ET), implying that these two processes involve different conformational states of the protein. Redox potential investigations using spectroelectrochemistry revealed that these aromatic residues close to the molybdenum center affect the potential of the presumably distant heme center in the resting state (as shown by the crystal structure of chicken SO), suggesting that the heme may be interacting with these residues during IET and/or catalytic turnover. These combined results suggest that in solution human SO may adopt different conformations for IET and for catalysis in the presence of the substrate. For IET the H337/W338 surface residues may serve as an alternative-docking site for the heme domain. The similarities between the mutant and wild-type EPR spectra indicate that the active site geometry around the Mo(V) center is not changed by the mutations studied here.


Assuntos
Aminoácidos Aromáticos/química , Elétrons , Heme/química , Molibdênio/química , Sulfito Oxidase/química , Catálise , Domínio Catalítico , Eletroquímica , Heme/genética , Heme/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Molibdênio/metabolismo , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
8.
Biochemistry ; 49(25): 5154-9, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20491442

RESUMO

The Mo(V) state of the molybdoenzyme sulfite oxidase (SO) is paramagnetic and can be studied by electron paramagnetic resonance (EPR) spectroscopy. Vertebrate SO at pH <7 and >9 exhibits characteristic EPR spectra that correspond to two structurally different forms of the Mo(V) active center termed the low-pH (lpH) and high-pH (hpH) forms, respectively. Both EPR forms have an exchangeable equatorial OH ligand, but its orientation in the two forms is different. It has been hypothesized that the formation of the lpH species is dependent on the presence of chloride. In this work, we have prepared and purified samples of the wild type and various mutants of human SO that are depleted of chloride. These samples do not exhibit the typical lpH EPR spectrum at low pH but rather exhibit spectra that are characteristic of the blocked species that contains an exchangeable equatorial sulfate ligand. Addition of chloride to these samples results in the disappearance of the blocked species and the formation of the lpH species. Similarly, if chloride is added before sulfite, the lpH species is formed instead of the blocked one. Qualitatively similar results were observed for samples of sulfite-oxidizing enzymes from other organisms that were previously reported to form a blocked species at low pH. However, the depletion of chloride has no effect upon the formation of the hpH species.


Assuntos
Ânions , Cloretos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Sulfito Oxidase/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA