Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 18(4): 2082191, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35704783

RESUMO

Strategies that improve influenza vaccine immunogenicity are critical for the development of vaccines for pandemic preparedness. Hemagglutinin (HA)-specific CD4+ T cell epitopes support protective B cell responses against seasonal influenza. However, in the case of avian H7N9, which poses a pandemic threat, HA elicits only weak neutralizing antibody responses in infection and vaccination without adjuvant. We hypothesized that an immune-engineered H7N9 HA incorporating a broadly reactive H3N2 HA-specific memory CD4+ T cell epitope that replaces a regulatory T cell-inducing epitope at the corresponding position in H7N9 HA could harness preexisting influenza T cell immunity to increase CD4+ T cells that are needed for protective antibody development. We designed and produced a virus-like particle (VLP) vaccine that carries the epitope augmented H7N9 HA (OPT1) and immunized HLA-DR3 transgenic mice with established H3N2 immunity. OPT1-VLPs stimulated higher stem cell, central, and effector memory CD4+ T cell levels over wild type VLP immunization. In addition, activated, IL-21-producing follicular helper T cell frequencies were enhanced. This novel immunogen design strategy illustrates that site-specific modifications aimed to augment T cell epitope content enhance CD4+ T cell responses among critical subpopulations capable of aiding protective immune responses upon antigen re-encounter and that mobilization of immune memory can be used to overcome the poor immunogenicity of avian influenza viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Humanos , Vírus da Influenza A Subtipo H3N2 , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Epitopos de Linfócito T , Estações do Ano , Anticorpos Antivirais
2.
Toxicol Appl Pharmacol ; 445: 116041, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35504338

RESUMO

Transcription factors HIF1 and HIF2 are central regulators of physiological responses to hypoxia and important for normal functioning of tissue stem cells and maintenance of healthy microvasculature. Even modest decreases in HIF activity exert detrimental effects in tissues although it is unclear what factors can directly impair HIF functions. We hypothesized that the presence of functionally important, large intrinsically disordered regions in HIFα subunits of HIF1/2 could make them structurally vulnerable to protein-damaging conditions. We found that common protein-damaging agents such as endogenous/exogenous aldehydes (formaldehyde, acetaldehyde), moderate heat shock and the environmental toxicant cadmium cause inactivation of HIF1 and HIF2 due to structural damage to HIFα subunits. Aldehydes triggered a rapid and selective depletion of HIF1α and HIF2α, which occurred as a result of enhanced binding of Pro-hydroxylated/VHL-ubiquitinated HIFα by 26S proteasomes. In the absence of proteasomal degradation, aldehyde-damaged HIF1 and HIF2 were transactivation defective and HIFα subunits became insoluble/denatured when their VHL-mediated ubiquitination was blocked. Protein damage by heat shock and cadmium resulted in the insolubility of Pro-nonhydroxylated HIFα. Thus, VHL-dependent ubiquitination of damaged HIFα also acts as means to maintain their solubility, permitting capture by proteasomes. The observed control of HIFα stability at the point of proteasome binding may extend to several posttranslational modifications that occur in the conformationally flexible regions of these proteins. Our findings revealed vulnerability of HIF1 and HIF2 to direct inactivation by protein-damaging agents, which helps understand their tissue injury mechanisms and favorable responses of hypoxic tumors to hyperthermia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cádmio , Aldeídos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cádmio/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ubiquitinação
3.
NPJ Vaccines ; 6(1): 71, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986292

RESUMO

Natural and vaccine-induced SARS-CoV-2 immunity in humans has been described but correlates of protection are not yet defined. T cells support the SARS-CoV-2 antibody response, clear virus-infected cells, and may be required to block transmission. In this study, we identified peptide epitopes associated with SARS-CoV-2 T-cell immunity. Using immunoinformatic methods, T-cell epitopes from spike, membrane, and envelope were selected for maximal HLA-binding potential, coverage of HLA diversity, coverage of circulating virus, and minimal potential cross-reactivity with self. Direct restimulation of PBMCs collected from SARS-CoV-2 convalescents confirmed 66% of predicted epitopes, whereas only 9% were confirmed in naive individuals. However, following a brief period of epitope-specific T-cell expansion, both cohorts demonstrated robust T-cell responses to 97% of epitopes. HLA-DR3 transgenic mouse immunization with peptides co-formulated with poly-ICLC generated a potent Th1-skewed, epitope-specific memory response, alleviating safety concerns of enhanced respiratory disease associated with Th2 induction. Taken together, these epitopes may be used to improve our understanding of natural and vaccine-induced immunity, and to facilitate the development of T-cell-targeted vaccines that harness pre-existing SARS-CoV-2 immunity.

4.
Hum Vaccin Immunother ; 16(9): 2042-2050, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783766

RESUMO

The influenza hemagglutinin (HA) isolated from avian H7N9 influenza virus strains elicit weak immune responses. This low immunogenicity may be due to a regulatory T cell (Treg)-stimulating epitopes in HA from the H7N9 isolate A/Anhui/1/2013 (Anh/13). In this report, this Treg stimulating sequence was removed from the wild-type (WT) H7 HA amino acid sequence and replaced with a conserved CD4 + T cell stimulating sequences from human seasonal H3N2 strains and designed OPT1 H7 HA. The effectiveness of this optimized H7 HA protein was determined using a humanized mouse (HLA-DR3) expressing the human leukocyte antigen (HLA) DR3 allele. HLA-DR3 mice were pre-immunized by infecting with H3N2 influenza virus, A/Hong Kong/4108/2014 and then vaccinated intramuscularly with either the WT H7 HA from Anh/13 or the OPT1 H7 HA antigen without adjuvant. The OPT1 H7 HA vaccination group elicited higher H7 HA-specific IgG titers that resulted in a lower mortality, weight loss, and lung viral titer following lethal challenge with the H7N9 Anh/13 influenza virus compared to WT-vaccinated mice. Overall, T-cell epitope-engineered vaccines can improve the immunogenicity of H7 HA antigens resulting in enhanced survival and lower morbidity against H7N9 influenza virus challenge.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Vírus da Influenza A Subtipo H3N2 , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/prevenção & controle , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA