Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001020

RESUMO

The digitization of production systems has revolutionized industrial monitoring. Analyzing real-time bottom-up data enables the dynamic monitoring of industrial processes. Data are collected in various types, like video frames and time signals. This article focuses on leveraging images from a vision system to monitor the manufacturing process on a computer numerical control (CNC) lathe machine. We propose a method for designing and integrating these video modules on the edge of a production line. This approach detects the presence of raw parts, measures process parameters, assesses tool status, and checks roughness in real time using image processing techniques. The efficiency is evaluated by checking the deployment, the accuracy, the responsiveness, and the limitations. Finally, a perspective is offered to use the metadata off the edge in a more complex artificial-intelligence (AI) method for predictive maintenance.

2.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005633

RESUMO

Digital Twin (DT) aims to provide industrial companies with an interface to visualize, analyze, and simulate the production process, improving overall performance. This paper proposes to extend existing DT by adding a complementary methodology to make it suitable for process supervision. To implement our methodology, we introduce a novel framework that identifies, collects, and analyses data from the production system, enhancing DT functionalities. In our case study, we implemented Key Performance Indicators (KPIs) in the immersive environment to monitor physical processes through cyber representation. First, a review of the Digital Twin (DT) allows us to understand the status of the existing methodologies as well as the problem of data contextualization in recent years. Based on this review, performance data in Cyber-Physical Systems (CPS) are identified, localized, and processed to generate indicators for monitoring machine and production line performance through DT. Finally, a discussion reveals the difficulties of integration and the possibilities to respond to other major industrial challenges, like predictive maintenance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA