Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540157

RESUMO

Malignant neoplasms are characterized by high molecular heterogeneity due to multilevel deregulation of gene expression and cellular functions. It is known that non-coding RNAs, including long intergenic non-coding RNAs (lincRNAs), can play significant roles in cancer biology. The current review focuses on a systematical analysis of genomic, transcriptomic, epigenomic, interactomic, and literature data on 65 lincRNAs of human chromosome 18 in the context of pan-cancer studies. The entire group of lincRNAs can be conditionally divided into 4 subgroups depending on experimental evidence on direct or indirect involvement in cancers and the biological associations with cancers, which we found during the data-mining process: the most studied (5 lincRNAs), moderately or poorly studied (11 lincRNAs), and understudied (31 lincRNAs). For the remaining 18 lincRNAs, data for analysis were fragmentary or missing. Among the key findings were the following: Of the lincRNAs of human chromosome 18, 40% have tissue-specific expression patterns, 22% of lincRNAs are known to have gene fusions, 40% of lincRNAs are prone to gene amplifications and/or deletions in cancers at a frequency greater than 3%, and 23% of lincRNAs are differentially expressed across cancer types, whereas 7% have subtype-specific expression patterns. LincRNAs' interactomes consist of 'master' microRNAs and 47 proteins (including cancer-associated proteins and microRNAs) that can interact with 3 or more lincRNAs. Functional enrichment analysis of a set of highly co-expressed genes retrieved for 17 lincRNAs in different cancer types indicated the potential associations of these lincRNAs with cellular signaling pathways. Six lincRNAs encoded small open-reading frame (smORF) proteins with emerging roles in cancers, and microRNAs as well as proteins with known functions in molecular carcinogenesis can bind to coding regions of smORFs. We identified seven transcriptomic signatures with potential prognostic value, consisting of two to seven different lincRNAs only. Taken together, the literature, biomedical, and molecular biology data analyzed indicated that only five of all lincRNAs of human chromosome 18 are cancer-associated, while eleven other lincRNAs have the tendency to be associated with cancers.

2.
Biomedicines ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001874

RESUMO

Due to the increasing prevalence of fungal diseases caused by fungi of the genus Candida and the development of pathogen resistance to available drugs, the need to find new effective antifungal agents has increased. Azole antifungals, which are inhibitors of sterol-14α-demethylase or CYP51, have been widely used in the treatment of fungal infections over the past two decades. Of special interest is the study of C. krusei CYP51, since this fungus exhibit resistance not only to azoles, but also to other antifungal drugs and there is no available information about the ligand-binding properties of CYP51 of this pathogen. We expressed recombinant C. krusei CYP51 in E. coli cells and obtained a highly purified protein. Application of the method of spectrophotometric titration allowed us to study the interaction of C. krusei CYP51 with various ligands. In the present work, the interaction of C. krusei CYP51 with azole inhibitors, and natural and synthesized steroid derivatives was evaluated. The obtained data indicate that the resistance of C. krusei to azoles is not due to the structural features of CYP51 of this microorganism, but rather to another mechanism. Promising ligands that demonstrated sufficiently strong binding in the micromolar range to C. krusei CYP51 were identified, including compounds 99 (Kd = 1.02 ± 0.14 µM) and Ch-4 (Kd = 6.95 ± 0.80 µM). The revealed structural features of the interaction of ligands with the active site of C. krusei CYP51 can be taken into account in the further development of new selective modulators of the activity of this enzyme.

3.
Biology (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453789

RESUMO

Cancer-associated disturbance of prostanoid signaling provides an aberrant accumulation of prostanoids. This signaling consists of 19 target genes, encoding metabolic enzymes and G-protein-coupled receptors, and prostanoids (prostacyclin, thromboxane, and prostaglandins E2, F2α, D2, H2). The study addresses the systems biology analysis of target genes in 24 solid tumors using a data mining pipeline. We analyzed differential expression patterns of genes and proteins, promoter methylation status as well as tissue-specific master regulators and microRNAs. Tumor types were clustered into several groups according to gene expression patterns. Target genes were characterized as low mutated in tumors, with the exception of melanoma. We found at least six ubiquitin ligases and eight protein kinases that post-translationally modified the most connected proteins PTGES3 and PTGIS. Models of regulation of PTGIS and PTGIR gene expression in lung and uterine cancers were suggested. For the first time, we found associations between the patient's overall survival rates with nine multigene transcriptomics signatures in eight tumors. Expression patterns of each of the six target genes have predictive value with respect to cytostatic therapy response. One of the consequences of the study is an assumption of prostanoid-dependent (or independent) tumor phenotypes. Thus, pharmacologic targeting the prostanoid signaling could be a probable additional anticancer strategy.

4.
Biomolecules ; 12(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053254

RESUMO

The identification of disease-related protein-protein interactions (PPIs) creates objective conditions for their pharmacological modulation. The contact area (interfaces) of the vast majority of PPIs has some features, such as geometrical and biochemical complementarities, "hot spots", as well as an extremely low mutation rate that give us key knowledge to influence these PPIs. Exogenous regulation of PPIs is aimed at both inhibiting the assembly and/or destabilization of protein complexes. Often, the design of such modulators is associated with some specific problems in targeted delivery, cell penetration and proteolytic stability, as well as selective binding to cellular targets. Recent progress in interfacial peptide design has been achieved in solving all these difficulties and has provided a good efficiency in preclinical models (in vitro and in vivo). The most promising peptide-containing therapeutic formulations are under investigation in clinical trials. In this review, we update the current state-of-the-art in the field of interfacial peptides as potent modulators of a number of disease-related PPIs. Over the past years, the scientific interest has been focused on following clinically significant heterodimeric PPIs MDM2/p53, PD-1/PD-L1, HIF/HIF, NRF2/KEAP1, RbAp48/MTA1, HSP90/CDC37, BIRC5/CRM1, BIRC5/XIAP, YAP/TAZ-TEAD, TWEAK/FN14, Bcl-2/Bax, YY1/AKT, CD40/CD40L and MINT2/APP.


Assuntos
Fator 2 Relacionado a NF-E2 , Peptídeos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peptídeos/química , Ligação Proteica
5.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066693

RESUMO

Isatin (indole-2, 3-dione) is a non-peptide endogenous bioregulator exhibiting a wide spectrum of biological activity, realized in the cell via interactions with numerous isatin-binding proteins, their complexes, and (sub) interactomes. There is increasing evidence that isatin may be involved in the regulation of complex formations by modulating the affinity of the interacting protein partners. Recently, using Surface Plasmon Resonance (SPR) analysis, we have found that isatin in a concentration dependent manner increased interaction between two human mitochondrial proteins, ferrochelatase (FECH), and adrenodoxine reductase (ADR). In this study, we have investigated the affinity-enhancing effect of isatin on the FECH/ADR interaction. The SPR analysis has shown that FECH forms not only homodimers, but also FECH/ADR heterodimers. The affinity-enhancing effect of isatin on the FECH/ADR interaction was highly specific and was not reproduced by structural analogues of isatin. Bioinformatic analysis performed using three dimensional (3D) models of the interacting proteins and in silico molecular docking revealed the most probable mechanism involving FECH/isatin/ADR ternary complex formation. In this complex, isatin is targeted to the interface of interacting FECH and ADR monomers, forming hydrogen bonds with both FECH and ADR. This is a new regulatory mechanism by which isatin can modulate protein-protein interactions (PPI).


Assuntos
Ferredoxina-NADP Redutase/química , Ferroquelatase/química , Isatina/química , Ferredoxina-NADP Redutase/metabolismo , Ferroquelatase/metabolismo , Humanos , Isatina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Ressonância de Plasmônio de Superfície
6.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872553

RESUMO

The cholinergic deficit in Alzheimer's disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aß peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aß peptide mediates its interaction with α4ß2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aß-α4ß2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4ß2 nAChR. Indeed, we discovered a 35HAEE38 site in α4ß2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aß42-α4ß2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aß via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aß42-induced inhibition of α4ß2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aß on α4ß2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4ß2 nAChR-dependent cholinergic dysfunction in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Feminino , Humanos , Modelos Moleculares , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Peptídeos/química , Conformação Proteica , Receptores Nicotínicos/química , Ressonância de Plasmônio de Superfície , Xenopus laevis
7.
Biology (Basel) ; 8(2)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226805

RESUMO

Prostacyclin synthase (PTGIS; EC 5.3.99.4) catalyzes isomerization of prostaglandin H2 to prostacyclin, a potent vasodilator and inhibitor of platelet aggregation. At present, limited data exist on functional coupling and possible ways of regulating PTGIS due to insufficient information about protein-protein interactions in which this crucial enzyme is involved. The aim of this study is to isolate protein partners for PTGIS from rat tissue lysates. Using CNBr-activated Sepharose 4B with covalently immobilized PTGIS as an affinity sorbent, we confidently identified 58 unique proteins by mass spectrometry (LC-MS/MS). The participation of these proteins in lysate complex formation was characterized by SEC lysate profiling. Several potential members of the PTGIS subinteractome have been validated by surface plasmon resonance (SPR) analysis. SPR revealed that PTGIS interacted with full-length cytochrome P450 2J2 and glutathione S-transferase (GST). In addition, PTGIS was shown to bind synthetic peptides corresponding to sequences of for GSTA1, GSTM1, aldo-keto reductase (AKR1A1), glutaredoxin 3 (GLRX3) and histidine triad nucleotide binding protein 2 (HINT2). Prostacyclin synthase could potentially be involved in functional interactions with identified novel protein partners participating in iron and heme metabolism, oxidative stress, xenobiotic and drugs metabolism, glutathione and prostaglandin metabolism. The possible biological role of the recognized interaction is discussed in the context of PTGIS functioning.

8.
J Alzheimers Dis ; 54(2): 809-19, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27567853

RESUMO

Amyloid-ß peptide (Aß) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aß, intraneuronal Aß (iAß) has been suggested to contribute to AD onset and development. Based on reported in vitro Aß-DNA interactions and nuclear localization of iAß, the interference of iAß with the normal DNA expression has recently been proposed as a plausible pathway by which Aß can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aß42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed ß-sheet rich Aß42 aggregates. Another type of Aß42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aß metal-binding domain's histidine residues in Aß-nucleic acid interactions mediated by zinc, Aß16 mutants with substitutions H6R and H6A-H13A and rat Aß16 lacking histidine residue 13 were used. The zinc-induced interaction of Aß16 with DNA was shown to critically depend on histidine residues 6 and 13. However, the inclusion of H6R mutation in Aß42 peptide did not affect DNA binding to Aß42 aggregates. Since oxidative and/or nitrosative stresses implicated in AD pathogenesis are known to release zinc ions from metallothioneins in cytoplasm and cell nuclei, our findings suggest that intracellular zinc can be an important player in iAß-nucleic acid interactions.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Histidina/fisiologia , Ácidos Nucleicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Zinco/metabolismo , Células Hep G2 , Humanos , Ligação Proteica/fisiologia , Zinco/farmacologia
9.
J Biomol Struct Dyn ; 34(11): 2317-26, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26513486

RESUMO

Zinc ions and modified amyloid-beta peptides (Aß) play a critical role in the pathological aggregation of endogenous Aß in Alzheimer's disease (AD). Zinc-induced Aß oligomerization is mediated by the metal-binding domain (MBD) which includes N-terminal residues 1-16 (Aß1-16). Earlier, it has been shown that Aß1-16 as well as some of its naturally occurring variants undergoes zinc-induced homodimerization via the interface in which zinc ion is coordinated by Glu11 and His14 of the interacting subunits. In this study using surface plasmon resonance technique, we have found that in the presence of zinc ions Aß1-16 forms heterodimers with MBDs of two Aß species linked to AD: Aß containing isoAsp7 (isoAß) and Aß containing phosphorylated Ser8 (pS8-Aß). The heterodimers appear to possess the same interface as the homodimers. Simulation of 200 ns molecular dynamic trajectories in two constructed models of dimers ([Aß1-16/Zn/Aß1-16] and [isoAß1-16/Zn/Aß1-16]), has shown that conformational flexibility of the N-terminal fragments of the dimer subunits is controlled by the structure of corresponding sites 6-8. The data suggest that isoAß and pS8-Aß can be involved in the AD pathogenesis by means of their zinc-dependent interactions with endogenous Aß resulting in the formation of heterodimeric seeds for amyloid aggregation.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Zinco/metabolismo , Doença de Alzheimer/metabolismo , Animais , Técnicas Biossensoriais , Humanos , Íons/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos
10.
J Alzheimers Dis ; 36(4): 633-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23645095

RESUMO

The interaction of the 16-mer synthetic peptide (Aß16), which represents the metal-binding domain of the amyloid-ß with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aß16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-ß. The interaction of Aß16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.


Assuntos
Peptídeos beta-Amiloides/metabolismo , DNA/metabolismo , Fragmentos de Peptídeos/metabolismo , Zinco/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos
11.
Mol Biosyst ; 7(4): 1053-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21350790

RESUMO

Analysis of complex formation between amyloid-ß fragments using surface plasmon resonance biosensing and electrospray mass spectrometry reveals that region 11-14 mediates zinc-induced dimerization of amyloid-ß and may serve as a potential drug target for preventing development and progression of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Zinco/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Concentração de Íons de Hidrogênio , Cinética , Fragmentos de Peptídeos/química , Ligação Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA