Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610549

RESUMO

The eradication of viral infections is an ongoing challenge in the medical field, as currently evidenced with the newly emerged Coronavirus disease 2019 (COVID-19) associated with severe respiratory distress. As treatments are often not available, early detection of an eventual infection and its level becomes of outmost importance. Nanomaterials and nanotechnological approaches are increasingly used in the field of viral sensing to address issues related to signal-to-noise ratio, limiting the sensitivity of the sensor. Superparamagnetic nanoparticles (MPs) present one of the most exciting prospects for magnetic bead-based viral aggregation assays and their integration into different biosensing strategies as they can be easily separated from a complex matrix containing the virus through the application of an external magnetic field. Despite the enormous potential of MPs as capture/pre-concentrating elements, they are not ideal with regard of being active elements in sensing applications as they are not the sensor element itself. Even though engineering of magneto-plasmonic nanostructures as promising hybrid materials directly applicable for sensing due to their plasmonic properties are often used in sensing, to our surprise, the literature of magneto-plasmonic nanostructures for viral sensing is limited to some examples. Considering the wide interest this topic is evoking at present, the different approaches will be discussed in more detail and put into wider perspectives for sensing of viral disease markers.

2.
J Mol Model ; 26(6): 160, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472293

RESUMO

Protein kinase 2 (CK2), an essential serine/threonine casein kinase, is considered an interesting target for cancer treatments. Different molecular modeling approaches such as pharmacophore modeling, molecular docking, and molecular dynamics simulations have been used to develop new CK2 inhibitors. This study presents a pharmacophore model that was generated by combining and merging the structure-based and ligand-based pharmacophore features and validated using receiver operating characteristic (ROC). Based on validation results revealing good predictive ability, this pharmacophore model was used as a three-dimensional query in a virtual screening simulation. Several compounds with different chemical scaffolds were retrieved as hits, which were further analyzed and refined using several molecular property filters. The obtained compounds were then filtered and compared to the crystallographic ligand on the basis of their predicted docking energies, binding mode, and interactions with CK2 active site residues. This step resulted in a compound with a high pharmacophore fit value and better docking energy. Molecular dynamics simulation indicated stable binding of the predicted compound to CK2 protein, characterized by root mean square deviation (RMSD) and root mean square fluctuation (RMSF) and hydrogen bond. Graphical abstract.


Assuntos
Inibidores de Proteínas Quinases/química , Domínio Catalítico , Desenvolvimento de Medicamentos/instrumentação , Descoberta de Drogas/métodos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
3.
Materials (Basel) ; 12(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586856

RESUMO

Noble metal nanostructures are exceptional light absorbing systems, in which electron⁻hole pairs can be formed and used as "hot" charge carriers for catalytic applications. The main goal of the emerging field of plasmon-induced catalysis is to design a novel way of finely tuning the activity and selectivity of heterogeneous catalysts. The designed strategies for the preparation of plasmonic nanomaterials for catalytic systems are highly crucial to achieve improvement in the performance of targeted catalytic reactions and processes. While there is a growing number of composite materials for photochemical processes-mediated by hot charge carriers, the reports on plasmon-enhanced electrochemical catalysis and their investigated reactions are still scarce. This review provides a brief overview of the current understanding of the charge flow within plasmon-enhanced electrochemically active nanostructures and their synthetic methods. It is intended to shed light on the recent progress achieved in the synthesis of multi-component nanostructures, in particular for the plasmon-mediated electrocatalysis of major fuel-forming and fuel cell reactions.

4.
J Colloid Interface Sci ; 507: 360-369, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28806655

RESUMO

The formation of composites of reduced graphene oxide (rGO) and magnetic nanoparticles (MP) has flourished in recent years as they combine the advantages of both nanomaterials. Most of these composite materials are prepared by in situ formation of MP onto rGO or by the post-adsorption onto rGO. We report here on a simple and highly controlled method for the fabrication of different magnetic 3D rGO-loaded hydrogels. Cellulose bound magnetic nanoparticles (MP@cellulose) were synthesized by chemical co-precipitation and loaded together with rGO into poly(ethylene glycol) dimethacrylate based hydrogels during their fabrication using photo-polymerization. The magnetic rGO-loaded hydrogels proved to be highly adaptable to different applications. The as-formed composites allowed for efficient dye removal with an adsorption capacity of 111.9±4mgg-1 in the case of methylene blue (MB). Integration of poly(ethyleneimine) (PEI) allowed for the selective capturing of Cr6+ ions with an adsorption capacity of 313±12mgg-1. Most importantly, independent of the application, the magnetic rGO-loaded hydrogel can be regenerated without loss of its adsorption capacity.

5.
J Mater Chem B ; 5(40): 8133-8142, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264652

RESUMO

The fast and efficient elimination of pathogenic bacteria from water, food or biological samples such as blood remains a challenging task. Magnetic isolation of bacteria from complex media holds particular promise for water disinfection and other biotechnological applications employing bacteria. When it comes to infectious diseases such as urinary tract infections, the selective removal of the pathogenic species in complex media such as human serum is also of importance. This issue can only be accomplished by adding pathogen specific targeting sites onto the magnetic nanostructures. In this work, we investigate the potential of 2-nitrodopamine modified magnetic particles anchored on reduced graphene oxide (rGO) nanocomposites for rapid capture and efficient elimination of E. coli associated with urinary tract infections (UTIs) from water and serum samples. An optimized magnetic nanocarrier achieves a 99.9% capture efficiency even at E. coli concentrations of 1 × 101 cfu mL-1 in 30 min. In addition, functionalization of the nanostructures with poly(ethylene glycol) modified pyrene units and anti-fimbrial E. coli antibodies allowed specific elimination of E. coli UTI89 from serum samples. Irradiation of the E. coli loaded nanocomposite with a near-infrared laser results in the total ablation of the captured pathogens. This method can be flexibly modified for any other pathogenic bacteria, depending on the antibodies used, and might be an interesting alternative material for a magnetic-based body fluid purification approach.

6.
Anal Chem ; 84(1): 194-200, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22022777

RESUMO

Boron-doped diamond (BDD) interfaces were chemically functionalized through the catalyst free thiol-yne reaction. Different thiolated precursors (e.g., perfluorodecanethiol, 6-(ferrocenyl)-hexanethiol, DNA) were successfully "clicked" to alkynyl-terminated BDD by irradiating the interface at 365 nm for 30 min. Thiolated oligonucleotide strands were immobilized using the optimized reaction conditions, and the surface concentration was tuned to obtain a surface coverage of 3.1 × 10(12) molecules cm(-2). Electrochemical impedance spectroscopy (EIS) was employed to follow the kinetics of hybridization and dehybridization events. The sensitivity of the oligonucleotide modified BDD interface was assayed, and a detection limit of 1 nM was obtained.


Assuntos
Boro/química , DNA/química , Diamante , Eletrodos , Hibridização de Ácido Nucleico , Compostos de Sulfidrila/química , Espectroscopia Dielétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA