RESUMO
Bacillus thuringiensis (Bt) has been widely used in foliar sprays as part of integrated pest management strategies against insect pests of agricultural crops. Since the advent of genetically modified plants expressing Bt δ-endotoxins, the bioavailability of Cry proteins has increased, and therefore for biosafety reasons their adverse effects should be studied, mainly for nontarget organisms. We evaluated, in Swiss mice, the hematotoxicity and genotoxicity of the genetically modified strains of Bt spore crystals Cry1Aa, 1Ab, 1Ac, or 2Aa at 27 mg/kg, and Cry1Aa, 1Ab and 2Aa also at 136 and 270 mg/kg, administered with a single intraperitoneal injection 24 h before euthanasia. Controls received filtered water or cyclophosphamide. Blood samples collected by cardiac puncture were used to perform hemogram, and bone marrow was extracted for the micronucleus test. Bt spore crystals presented toxicity for lymphocytes when in higher doses, which varied according to the type of spore crystal studied, besides promoting cytotoxic and genotoxic effects for the erythroid lineage of bone marrow, mainly at highest doses. Although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results indicated that these Bt spore crystals were not harmless to mice. This suggests that a more specific approach should be taken to increase knowledge about their toxicological properties and to establish the toxicological risks to nontarget organisms. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 970-978, 2016.
Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Dano ao DNA , Feminino , Contagem de Linfócitos , Masculino , Camundongos , Testes para Micronúcleos , Contagem de Plaquetas , Esporos/químicaRESUMO
In addition to their applicability as biopesticides, Bacillus thuringiensis (Bt) Cry1Ac spore-crystals are being researched in the immunology field for their potential as adjuvants in mucosal and parenteral immunizations. We aimed to investigate the hematotoxicity and genotoxicity of Bt spore-crystals genetically modified to express Cry1Ac individually, administered orally (p.o.) or with a single intraperitoneal (i.p.) injection 24 h before euthanasia, to simulate the routes of mucosal and parenteral immunizations in Swiss mice. Blood samples were used to perform hemogram, and bone marrow was used for the micronucleus test. Cry1Ac presented cytotoxic effects on erythroid lineage in both routes, being more severe in the i.p. route, which also showed genotoxic effects. The greater severity noted in this route, mainly at 6.75 mg/kg, as well as the intermediate effects at 13.5 mg/kg, and the very low hematotoxicity at 27 mg/kg, suggested a possible inverse agonism. The higher immunogenicity for the p.o. route, particularly at 27 mg/kg, suggested that at this dose, Cry 1Ac could potentially be used as a mucosal adjuvant (but not in parenteral immunizations, due to the genotoxic effects observed). This potential should be investigated further, including making an evaluation of the proposed inverse agonism and carrying out cytokine profiling.
Assuntos
Adjuvantes Imunológicos/farmacologia , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Esporos Bacterianos , Adjuvantes Imunológicos/administração & dosagem , Administração Oral , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/administração & dosagem , Agonismo Inverso de Drogas , Endotoxinas/administração & dosagem , Feminino , Testes Hematológicos , Proteínas Hemolisinas/administração & dosagem , Injeções Intraperitoneais , Masculino , Camundongos , Testes para Micronúcleos , MucosaRESUMO
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.