Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(18): 8858-8867, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38488103

RESUMO

For decades, the inherently reflective nature of metallic electromagnetic (EM) shields and their induced secondary EM pollution have posed significant challenges for sensitive electronics. While numerous efforts have been made to develop superior EM shielding systems, the issue of reflection dominancy in metallic substrates remains unresolved. Herein, we addressed this long-lasting obstacle by pairing metallic shields with ultra-lightweight (density of 3.12-3.40 mg cm-3) elastic anti-reflection aerogels, altering their shielding mechanism from dominant reflection (reflectance >0.8) to absorption (absorbance >0.7) by trapping EM waves inside the aerogel. The aerogel EM traps were generated using interfacial complexation, yielding engineerable filamentous liquid structures. These served as templates for aerogel creation through a follow-up process of freezing and lyophilization. The engineerable lossy medium of aerogels benefits from a multi-scale porous construct with the combined action of dielectric and conduction losses, highly dissipating the EM waves and minimizing the reflections. Notably, declining the diameter of aerogel filaments promoted its absorption dominancy, rendering it a potent dissipating medium for EM waves. Pairing a metallic substrate with filamentous aerogel EM traps has resulted in an exceptionally effective absorption-dominant shielding system, achieving absorbance levels between 0.70-0.81. This system offers a shielding effectiveness of 53-89 dB within the X-band frequency range. This innovation addresses a persistent issue in shielding science related to the reflective characteristics of metallic substrates, effectively inhibiting their induced EM reflections.

2.
ACS Nano ; 17(24): 25542-25551, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078623

RESUMO

Interfacial assemblies formed by colloidal complexation are effective in multiphase stabilization, as shown in structured liquids and Pickering emulgels. Herein, we demonstrate a type of biobased colloidal system that spontaneously stabilizes an organic phase in a continuous hydrogel phase. Specifically, a triterpene extracted from bark (betulin, BE) is added to an organic phase containing a coniferous resin (rosin acid, a diterpene). BE is shown to take part in strong noncovalent interactions with the nanochitin dispersed in the aqueous (hydrogel) phase, leading to a complex of high interfacial activity. The viscoelastic response of the system is rationalized by the presence of a superstable structured dual network. When used as a templating material, the emulgel develops into structured liquids and cryogels. The herein introduced all-biobased type of nanoparticle surfactant system forms a gel ("emulsion-filled" with "aggregated droplets") that features the functional benefits of both betulin and nanochitin.

3.
Nat Commun ; 14(1): 7811, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016959

RESUMO

Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture.

4.
Small ; 18(20): e2200220, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279945

RESUMO

The rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter. The as-obtained LS systems can be readily converted into ultra-flyweight aerogels displaying worm-like morphologies with multiscale porosities (micro- and macro-scaled). The presence of reduced GO nanosheets in such large surface area systems renders materials with outstanding mechanical compressibility and tailorable electrical activity. This platform for engineering soft materials and solid constructs opens up new horizons toward advanced functionality and tunability, as demonstrated here for ultralight printed conductive circuits and electromagnetic interference shields.


Assuntos
Condutividade Elétrica , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA