Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mycoses ; 66(5): 420-429, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36583225

RESUMO

OBJECTIVES: Mycetoma is a neglected tropical implantation disease caused by 70 different infectious agents. Identifying the causative organism to the species level is essential for appropriate patient management. Ultrasound, histopathology, culture and two species-specific PCRs are most the commonly used methods for species identification in endemic regions. The aim of this study was to compare the diagnostic performance of these commonly used assays using sequencing of barcoding genes as the gold standard. METHODS: This descriptive cross-sectional study was conducted at the Mycetoma Research Centre, University of Khartoum, Sudan. It included 222 patients suspected of fungal mycetoma caused by Madurella mycetomatis. RESULTS: 154 (69.3%) were correctly identified by ultrasound, histology, culture and both species-specific PCRs. In 60 patients, at least one of the diagnostic tests failed to identify M. mycetomatis. Five patients had no evidence of eumycetoma, and for three, only the ultrasound was indicative of mycetoma. The two species-specific PCRs were the most sensitive and specific methods, followed by culture and histology. Ultrasound was the least specific as it only allowed differentiation between actinomycetoma and eumycetoma. The time to result was 9.38 minutes for ultrasound, 3.76 hours for PCR, 8.5 days for histopathology and 21 days for grain culturing. CONCLUSION: Currently, PCR directly on DNA isolated from grains is the most rapid and reliable diagnostic tool to identify M. mycetomatis eumycetoma.


Assuntos
Madurella , Micetoma , Humanos , Micetoma/diagnóstico , Estudos Transversais , Sudão/epidemiologia , Reação em Cadeia da Polimerase , Madurella/genética , Testes Diagnósticos de Rotina
2.
PLoS Negl Trop Dis ; 16(11): e0010787, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36322569

RESUMO

Madurella mycetomatis is one of the main causative agents of mycetoma, a debilitating neglected tropical disease. Improved understanding of the genomic diversity of the fungal and bacterial causes of mycetoma is essential to advances in diagnosis and treatment. Here, we describe a high-quality genome assembly of M. mycetomatis and results of the whole genome sequence analysis of 26 isolates from Sudan. We demonstrate evidence of at least seven genetically diverse lineages and extreme clonality among isolates within these lineages. We also performed shotgun metagenomic analysis of DNA extracted from mycetoma grains and showed that M. mycetomatis reads were detected in all sequenced samples with the average of 11,317 reads (s.d. +/- 21,269) per sample. In addition, 10 (12%) of the 81 tested grain samples contained bacterial reads including Streptococcus sp., Staphylococcus sp. and others.


Assuntos
Madurella , Micetoma , Humanos , Madurella/genética , Micetoma/microbiologia , Sudão , Metagenômica , Genômica , Doenças Negligenciadas
3.
Mycoses ; 65(12): 1170-1178, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36005544

RESUMO

BACKGROUND: Eumycetoma is a neglected tropical disease. It is a chronic inflammatory subcutaneous infection characterised by painless swellings which produce grains. It is currently treated with a combination of itraconazole and surgery. In an ongoing clinical study, the efficacy of fosravuconazole, the prodrug of ravuconazole, is being investigated. For both itraconazole and ravuconazole, no clinical breakpoints or epidemiological cut-off values (ECV) to guide treatment are currently available. OBJECTIVE: To determine tentative ECVs for itraconazole and ravuconazole in Madurella mycetomatis, the main causative agent of eumycetoma. MATERIALS AND METHODS: Minimal inhibitory concentrations (MICs) for itraconazole and ravuconazole were determined in 131 genetically diverse clinical M. mycetomatis isolates with the modified CLSI M38 broth microdilution method. The MIC distributions were established and used to determine ECVs with the ECOFFinder software. CYP51A sequences were sequenced to determine whether mutations occurred in this azole target gene, and comparisons were made between the different CYP51A variants and the MIC distributions. RESULTS: The MICs ranged from 0.008 to 1 mg/L for itraconazole and from 0.002 to 0.125 mg/L for ravuconazole. The M. mycetomatis ECV for itraconazole was 1 mg/L and for ravuconazole 0.064 mg/L. In the wild-type population, two CYP51A variants were found for M. mycetomatis, which differed in one amino acid at position 499 (S499G). The MIC distributions for itraconazole and ravuconazole were similar between the two variants. No mutations linked to decreased susceptibility were found. CONCLUSION: The proposed M. mycetomatis ECV for itraconazole is 1 mg/L and for ravuconazole 0.064 mg/L.


Assuntos
Madurella , Micetoma , Humanos , Madurella/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Micetoma/tratamento farmacológico , Triazóis/farmacologia , Triazóis/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico
4.
PLoS Negl Trop Dis ; 16(7): e0010128, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877680

RESUMO

Mycetoma is a neglected tropical chronic granulomatous inflammatory disease of the skin and subcutaneous tissues. More than 70 species with a broad taxonomic diversity have been implicated as agents of mycetoma. Understanding the full range of causative organisms and their antibiotic sensitivity profiles are essential for the appropriate treatment of infections. The present study focuses on the analysis of full genome sequences and antibiotic inhibitory concentration profiles of actinomycetoma strains from patients seen at the Mycetoma Research Centre in Sudan with a view to developing rapid diagnostic tests. Seventeen pathogenic isolates obtained by surgical biopsies were sequenced using MinION and Illumina methods, and their antibiotic inhibitory concentration profiles determined. The results highlight an unexpected diversity of actinomycetoma causing pathogens, including three Streptomyces isolates assigned to species not previously associated with human actinomycetoma and one new Streptomyces species. Thus, current approaches for clinical and histopathological classification of mycetoma may need to be updated. The standard treatment for actinomycetoma is a combination of sulfamethoxazole/trimethoprim and amoxicillin/clavulanic acid. Most tested isolates had a high IC (inhibitory concentration) to sulfamethoxazole/trimethoprim or to amoxicillin alone. However, the addition of the ß-lactamase inhibitor clavulanic acid to amoxicillin increased susceptibility, particularly for Streptomyces somaliensis and Streptomyces sudanensis. Actinomadura madurae isolates appear to have a particularly high IC under laboratory conditions, suggesting that alternative agents, such as amikacin, could be considered for more effective treatment. The results obtained will inform future diagnostic methods for the identification of actinomycetoma and treatment.


Assuntos
Micetoma , Amoxicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Clavulânico/uso terapêutico , Humanos , Micetoma/microbiologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico
5.
Trans R Soc Trop Med Hyg ; 115(4): 431-435, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33682008

RESUMO

Mycetoma is a chronic granulomatous disease that significant affects the subcutaneous tissue and deep structures. Mycetoma is caused by certain fungi (eumycetoma) or higher bacteria (actinomycetoma). The clinical presentation is variable and depends on the causative agent. For proper treatment and patient management, an accurate diagnosis of the species is mandatory. The disease mainly involves the extremities and it is rarely seen in the head and neck or other sites. In this communication, we present an interesting case of both invasive and aggressive mastoid bone eumycetoma caused by Madurella mycetomatis. Such cases are defied by complex challenges in finding effective surgical and medical treatments when the patient does not respond to both prolonged and different antifungal therapies.


Assuntos
Madurella , Micetoma , Antifúngicos/uso terapêutico , Humanos , Processo Mastoide/diagnóstico por imagem , Processo Mastoide/cirurgia , Micetoma/diagnóstico , Micetoma/tratamento farmacológico
6.
Trans R Soc Trop Med Hyg ; 115(4): 406-410, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33382899

RESUMO

Mycetoma is a localized, chronic, granulomatous disease that can be caused by fungi (eumycetoma) or bacteria (actinomycetoma). Of the 70 different causative agents implicated in mycetoma worldwide, Actinomadura madurae is the only one that causes multiple cases on all continents. Recently, new Actinomadura species were described as causative agents of human mycetoma. One of these new causative agents was Actinomadura mexicana, which was identified in Latin America. Here we demonstrate that this causative agent is not confined to Latin America and that it is also a causative agent of actinomycetoma in Sudan. The disease was managed by antibiotic treatment alone and resulted in complete cure after 6 months of treatment, which is quick when compared with actinomycetoma cases caused by other Actinomadura species.


Assuntos
Micetoma , Actinomadura , Antibacterianos/uso terapêutico , Humanos , Micetoma/tratamento farmacológico , Micetoma/epidemiologia , Sudão/epidemiologia
7.
PLoS Negl Trop Dis ; 13(8): e0007056, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465459

RESUMO

Mycetoma is a devastating neglected tropical disease, caused by various fungal and bacterial pathogens. Correct diagnosis to the species level is mandatory for proper treatment. In endemic areas, various diagnostic tests and techniques are in use to achieve that, and that includes grain culture, surgical biopsy histopathological examination, fine needle aspiration cytological (FNAC) examination and in certain centres molecular diagnosis such as PCR. In this retrospective study, the sensitivity, specificity and diagnostic accuracy of grain culture, surgical biopsy histopathological examination and FNAC to identify the mycetoma causative organisms were determined. The histopathological examination appeared to have better sensitivity and specificity. The histological examination results were correct in 714 (97.5%) out of 750 patients infected with Madurella mycetomatis, in 133 (93.6%) out of 142 patients infected with Streptomyces somaliensis, in 53 (74.6%) out of 71 patients infected with Actinomadura madurae and in 12 (75%) out of 16 patients infected with Actinomadura pelletierii. FNAC results were correct in 604 (80.5%) out of 750 patients with Madurella mycetomatis eumycetoma, in 50 (37.5%) out of 133 Streptomyces somaliensis patients, 43 (60.5%) out of 71 Actinomadura madurae patients and 11 (68.7%) out of 16 Actinomadura pelletierii. The mean time required to obtain the FNAC result was one day, and for the histopathological examinations results it was 3.5 days, and for grain it was a mean of 16 days. In conclusion, histopathological examination and FNAC are more practical techniques for rapid species identification than grain culture in many endemic regions.


Assuntos
Testes Diagnósticos de Rotina/métodos , Micetoma/diagnóstico , Micetoma/microbiologia , Micetoma/patologia , Patologia Molecular/métodos , Actinobacteria/isolamento & purificação , Actinomadura , Adolescente , Adulto , Idoso , Biópsia , Criança , Pré-Escolar , Feminino , Humanos , Madurella/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Micetoma/cirurgia , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Sensibilidade e Especificidade , Streptomyces/isolamento & purificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA