Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 175275, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111271

RESUMO

The gut microbiome plays a crucial role in maintaining animal health and is influenced by various factors, including light exposure; however, the response in laying hens of the gut microbiome to intermittent light regimes and the related impact on antibiotic resistance genes (ARGs) remain poorly understood. In this study, we divided 20-week-old laying hens into two groups. These groups were exposed to either continuous normal light or intermittent light for 8 weeks. The feces and cecal contents of laying hens were collected for analysis. Metagenomic analysis of both feces and cecal content samples revealed significant shifts in the microbial composition and abundance of ARGs under intermittent light exposure compared to normal light exposure (P < 0.05). Furthermore, metabolomic analysis of the cecal contents revealed substantial alterations in the abundance and composition of ARGs and mobile genetic elements (MGEs) in response to intermittent light exposure (P < 0.05). Network analysis revealed intricate co-occurrence patterns among bacterial communities, metabolites, and ARGs, highlighting correlations between Bacteroidetes species, ARGs, and metabolites. Although certain bacterial species showed differential associations, the dominant bacteria carrying ARGs or MGEs had relatively low numbers, suggesting that other bacterial communities may have had a greater influence on ARG dissemination. Moreover, our observations highlight the crucial role of metabolites as mediators between bacterial communities and ARGs, providing novel insights into the dynamics of antibiotic resistance development. Our findings underscore the impact of intermittent light exposure on ARG proliferation in poultry farming and emphasize interconnections among ARGs, bacterial communities, and metabolic pathways. The results underscore the importance of considering both microbial communities and metabolic processes to understand antibiotic resistance in agricultural settings.


Assuntos
Ceco , Galinhas , Resistência Microbiana a Medicamentos , Fezes , Microbioma Gastrointestinal , Animais , Galinhas/microbiologia , Ceco/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Resistência Microbiana a Medicamentos/genética , Luz , Feminino , Bactérias/genética , Genes Bacterianos , Antibacterianos/farmacologia
2.
NPJ Biofilms Microbiomes ; 10(1): 76, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209853

RESUMO

The pig gut virome plays a vital role in the gut microbial ecosystem of pigs. However, a comprehensive understanding of their diversity and a reference database for the virome are currently lacking. To address this gap, we established a Pig Virome Database (PVD) that comprised of 5,566,804 viral contig sequences from 4650 publicly available gut metagenomic samples using a pipeline designated "metav". By clustering sequences, we identified 48,299 viral operational taxonomic units (vOTUs) genomes of at least medium quality, of which 92.83% of which were not found in existing major databases. The majority of vOTUs were identified as Caudoviricetes (72.21%). The PVD database contained a total of 2,362,631 protein-coding genes across the above medium-quality vOTUs genomes that can be used to explore the functional potential of the pig gut virome. These findings highlight the extensive diversity of viruses in the pig gut and provide a pivotal reference dataset for forthcoming research concerning the pig gut virome.


Assuntos
Microbioma Gastrointestinal , Genoma Viral , Metagenômica , Viroma , Vírus , Animais , Suínos , Viroma/genética , Metagenômica/métodos , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Mineração de Dados , Metagenoma , Filogenia
3.
Microorganisms ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930496

RESUMO

University dormitories represent densely populated environments, and washing machines are potential sites for the spread of bacteria and microbes. However, the extent of antibiotic resistance gene (ARG) variation in washing machines within university dormitories and their potential health risks are largely unknown. To disclose the occurrence of ARGs and antibiotic-resistant bacteria from university dormitories, we collected samples from washing machines in 10 dormitories and used metagenomic sequencing technology to determine microbial and ARG abundance. Our results showed abundant microbial diversity, with Proteobacteria being the dominant microorganism that harbors many ARGs. The majority of the existing ARGs were associated with antibiotic target alteration and efflux, conferring multidrug resistance. We identified tnpA and IS91 as the most abundant mobile genetic elements (MGEs) in washing machines and found that Micavibrio aeruginosavorus, Aquincola tertiaricarbonis, and Mycolicibacterium iranicum had high levels of ARGs. Our study highlights the potential transmission of pathogens from washing machines to humans and the surrounding environment. Pollution in washing machines poses a severe threat to public health and demands attention. Therefore, it is crucial to explore effective methods for reducing the reproduction of multidrug resistance.

4.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930503

RESUMO

The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.

5.
J Environ Manage ; 365: 121634, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943752

RESUMO

The impact of NaOH-modified biochar on the release of NH3 and H2S from laying hens' manure was examined for 44 days, using a small-scale simulated aerobic composting system. The findings revealed that the NaOH-modified biochar reduced NH3 and H2S emissions by 40.63% and 77.78%, respectively, compared to the control group. Moreover, the emissions of H2S were significantly lower than those of the unmodified biochar group (p < 0.05). The increased specific surface area and microporous structure of the biochar, as well as the higher content of alkaline and oxygenated functional groups, were found to facilitate the adsorption of NH3 and H2S. This enhanced adsorption capability was the primary reason for the significant reduction in NH3 emissions. Furthermore, during the high-temperature phase of composting, there was a notable alteration in the microbial community. The abundance of Limnochordaceae, Savagea, and IMCC26207 increased significantly which aided in the conversion of H2S to stable sulfate. These microorganisms also influenced the abundance of functional genes involved in sulfur metabolism, thereby inhibiting cysteine synthesis, along with the decomposition and conversion of sulfate to sulfite. This led to a significant decrease in H2S emissions. This study provides valuable data for the selection of deodorizers in the composting process of egg-laying hens. The results have significant implications for the application of NaOH-modified biochar for odor reduction in aerobic composting processes.


Assuntos
Amônia , Carvão Vegetal , Galinhas , Compostagem , Sulfeto de Hidrogênio , Esterco , Sulfeto de Hidrogênio/química , Animais , Carvão Vegetal/química , Amônia/química , Hidróxido de Sódio/química , Feminino
6.
Ecotoxicol Environ Saf ; 271: 115918, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232521

RESUMO

Tetracycline antibiotics play a vital role in animal husbandry, primarily employed to uphold the health of livestock and poultry. Consequently, when manure is reintegrated into farmland, tetracycline antibiotics can persist in the soil. Simultaneously, to ensure optimal crop production, organochlorine pesticides (OCPs) are frequently applied to farmland. The coexistence of tetracycline antibiotics and OCPs in soil may lead to an increased risk of transmission of tetracycline resistance genes (TRGs). Nevertheless, the precise mechanism underlying the effects of OCPs on tetracycline antibiotics and TRGs remains elusive. In this study, we aimed to investigate the effects of OCPs on soil tetracycline antibiotics and TRGs using different concentrations of doxycycline (DOX) and pentachlorophenol (PCP). The findings indicate that PCP and DOX mutually impede their degradation in soil. Furthermore, our investigation identifies Sphingomonas and Bacillus as potential pivotal microorganisms influencing the reciprocal inhibition of PCP and DOX. Additionally, it is observed that the concurrent presence of PCP and DOX could impede each other's degradation by elevating soil conductivity. Furthermore, we observed that a high concentration of PCP (10.7 mg/kg) reduced the content of efflux pump tetA, ribosome protective protein tetM, tetQ, and passivating enzyme tetX. In contrast, a low PCP concentration (6.4 mg/kg) only reduced the content of ribosome protective protein tetQ. This suggests that PCP may reduce the relative abundance of TRGs by altering the soil microbial community structure and inhibiting the potential host bacteria of TRGs. These findings have significant implications in understanding the combined pollution of veterinary antibiotics and OCPs. By shedding light on the interactions between these compounds and their impact on microbial communities, this study provides a theoretical basis for developing strategies to manage and mitigate their environmental impact, and may give some information regarding the sustainable use of antibiotics and pesticides to ensure the long-term health and productivity of agricultural systems.


Assuntos
Pentaclorofenol , Praguicidas , Animais , Doxiciclina/farmacologia , Pentaclorofenol/toxicidade , Solo/química , Resistência a Tetraciclina/genética , Microbiologia do Solo , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Genes Bacterianos , Praguicidas/farmacologia , Criação de Animais Domésticos
7.
Microbiome ; 11(1): 235, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872584

RESUMO

BACKGROUND: Companion animals can contribute to the physical and mental health of people and often live in very close association with their owners. However, the antibiotic resistome carried by companion animals and the impact they have on their owners and living environment remain unclear. In this study, we compared the ARG profiles of cats, humans, and their living environments using metagenomic analysis to identify the core ARGs in the cat and human gut and explore the potential impact of cats on ARGs in the human gut through the environment. RESULTS: Results showed that the abundance of ARGs in the cat gut was significantly higher than that in the human gut (P < 0.0001), with aminoglycoside and tetracycline resistance genes being the dominant ARGs in the cat gut. There was no significant difference in the abundance of total ARGs in the guts of cat owners and non-owners (P > 0.05). However, the abundance of aminoglycoside resistance genes including APH(2'')-IIa and AAC(6')-Im was significantly higher in cat owners than that in non-cat owners (P < 0.001). Also, ARG abundance was positively correlated with the frequency of cat activity in the living environment. Enterobacteriaceae was the dominant ARG host co-occurring in the cat gut, human gut, and living environment. CONCLUSIONS: Our results show that cats may shape the living environment resistome and thus the composition of some ARGs in the human gut, highlighting the importance of companion animal environment health. Video Abstract.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Gatos , Antibacterianos/farmacologia , Genes Bacterianos/genética , Aminoglicosídeos , Tetraciclina , Enterobacteriaceae
8.
Animals (Basel) ; 13(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37760368

RESUMO

The objectives of the study were to screen one or several Chinese herbal extracts with good ammonia emission reduction effects using an in vitro gas production study. The study consisted of a control (without Chinese herbal extract), and 11 experimental groups with added cinnamon extract (CE), Osmanthus extract (OE), tangerine peel extract (TPE), dandelion extract (DE), Coptis chinensis extract (CCE), honeysuckle extract (HE), Pulsatilla root extract (PRE), yucca extract (YE), licorice extract (LE), Ginkgo biloba extract (GBE), or astragalus extract (AE). The results showed that HE, PRE, YE, LE, GBE, and AE significantly reduced ammonia production (p ≤ 0.05). The most significant ammonia inhibition was achieved via AE, resulting in a 26.76% reduction. In all treatments, Chinese herbal extracts had no significant effect on pH, conductivity, or uric acid, urea, and nitrate-nitrogen concentrations (p > 0.05). However, AE significantly reduced urease activity and the relative activity of uricase (p ≤ 0.05). AE significantly increased the relative abundance of Bacteroides and decreased the relative abundance of Clostridium, Desulfovibrio, and Prevotell (p ≤ 0.05). Astragalus extract inhibited ammonia emission from laying hens by changing the gut microbial community structure, reducing the relative abundance of ammonia-producing bacteria, and reducing microorganisms' uricase and urease activities.

9.
Front Microbiol ; 14: 1177404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455745

RESUMO

Industrialized layer chicken feedlots harbor complex environmental microbial communities that affect the enrichment and exchange of gut bacteria and antibiotic resistance genes (ARGs). However, the contribution of different environmental sources to the gut ARGs of layer chickens is not clear. Here, layer chicken gut and environmental samples (air, water, feed, cage, feather, maternal hen feces, uropygial glands) were collected during the early 3 month period before the laying of eggs, and the source and characteristics of the gut microorganisms and ARGs were analyzed by performing 16S rRNA and metagenomic sequencing. The results showed that the abundances of Bacteroidetes and Actinobacteria in cecum of layer chickens gradually increased, while that of Proteobacteria decreased with age, and the number and relative abundance of ARGs decreased significantly with age. On day 5, 57% of the layer chicken cecal ARGs were from feather samples, and 30% were from cage samples. Subsequently, the contribution of cage ARGs became progressively more prominent over time. At days 30 and 57, the contribution of cage ARGs to the chick cecal ARGs reached 63.3 and 69.5%, respectively. The bacterial community composition (especially the abundances of Klebsiella pneumoniae and Escherichia coli) was the major factor impacting the ARG profile. K. pneumoniae and E. coli were mainly transmitted from feathers to the layer chicken cecum, and the contribution rates were 32 and 3.4%, respectively. In addition, we observed the transmission of ARG-carrying bacteria (Bacteroides fragilis) from the cage to the gut, with a contribution rate of 11.5%. It is noteworthy that B. fragilis is an opportunistic pathogen that may cause diarrhea in laying hens. These results can provide reference data for the healthy breeding of layer chickens and the prevention and control of ARG pollution.

10.
J Hazard Mater ; 458: 131889, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348375

RESUMO

Livestock-derived tetX-positive Escherichia coli with tigecycline resistance poses a serious risk to public health. Fitness costs, antibiotic residues, and other tetracycline resistance genes (TRGs) are fundamental in determining the spread of tetX in the environment, but there is a lack of relevant studies. The results of this study showed that both tetO and tetX resulted in reduction in growth and an increased in the metabolic burden of E. coli, but the presence of doxycycline reversed this phenomenon. Moreover, the protection of E. coli growth and metabolism by tetO was superior to that of tetX in the presence of doxycycline, resulting in a much lower competitiveness of tetX-carrying E. coli than tetO-carrying E. coli. The results of RNA-seq showed that the increase in outer membrane proteins (ompC, ompF and ompT) of tetX-carrying E. coli resulted in increased membrane permeability and biofilm formation, which is an important reason for fitness costs. Overall, the increased membrane permeability and metabolic burden of E. coli is the mechanistic basis for the high fitness cost of tetX, and the spread of tetO may limit the spread of tetX. This study provides new insights into the rational use of tetracycline antibiotics to control the spread of tetX.


Assuntos
Doxiciclina , Escherichia coli , Tigeciclina/metabolismo , Escherichia coli/genética , Antibacterianos/metabolismo , Tetraciclina/metabolismo , Testes de Sensibilidade Microbiana
11.
Animals (Basel) ; 13(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37106856

RESUMO

Doxycycline is a therapeutic veterinary antibiotic commonly used in pig breeding. In this study, 27 fattening pigs of 33.5 ± 0.72 kg were divided equally into 3 groups. Doxycycline at 0, 3, and 5 mg/kg body weight was added to the feed in groups CK, L and H. The medication and withdrawal periods were set at 5 and 28 days. The results showed that the doxycycline average concentrations in groups L and H during the medication period were 117.63 ± 13.54 and 202.03 ± 24.91 mg/kg dry matter, respectively. Doxycycline levels were lower than the detection limit after 20 days. Doxycycline did not affect the diversity of the intestinal microbial community structure. The relative abundances of Streptococcus were significantly higher in treatment groups than that in group CK, and Alishewanella, Vagococcus, Cloacibacterium, and Campylobacter abundances were significantly positively correlated with doxycycline concentration. Interestingly, the microbiota cooccurrence network suggested that high doxycycline concentration weakened the interactions among bacteria until day 33. Functional prediction showed that doxycycline significantly altered metabolic pathways related to the cell membrane. The results revealed that the use of doxycycline during pig breeding can affect bacterial abundance during the withdrawal period, and it may affect interactions among bacteria and change the intestinal metabolic pathways.

12.
Sci Total Environ ; 858(Pt 3): 160041, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356756

RESUMO

Light mainly synergistically regulates the central biological clock system. In farming, long-term light exposure may induce metabolic disorders and increase the load on the liver in laying hens. In contrast, intermittent photoperiods can reduce light exposure and increase rest time to improve the health of laying hens. The circadian rhythms of gut microbes are essential for the health of the host. However, the circadian rhythms of gut microbes and how those microbes interact with the host under intermittent photoperiods are not clear. We used laying hens as a model to evaluate the circadian rhythms of gut microbes and biological clock genes under different intermittent photoperiods. Intermittent photoperiod 1 (IP1, 16 [3 h -L/1 h -D]: 8 D) enhanced the circadian rhythms of cBmal1, cBmal2, cCry1, and cCry2 in the hypothalamus and increased the expression of cClock, cBmal1, and cCry2 in the liver and seven clock genes in the cecal wall. The intermittent photoperiod also significantly altered the composition and metabolic function of the cecal microbiota via the melatonin pathway. The concentrations of short-chain fatty acids (SCFAs) and the abundance of SCFA-producing genera such as Odoribacter significantly increased under the IP1 treatment and might have further fed back into and strengthened the peripheral and central rhythms by activating the SCFA receptor gene pathway in cecal wall. These findings clarify the mediation mechanisms for the circadian rhythms of the central circadian clock and highlight the role of intermittent photoperiod-induced regulation of the interaction between the host clock and the cecal microbial community.


Assuntos
Galinhas , Proteínas Repressoras , Animais , Feminino , Relógios Biológicos
13.
Microb Ecol ; 86(2): 947-958, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36326874

RESUMO

The emergence of the plasmid-mediated tigecycline resistance gene tetX family in pig farms has attracted worldwide attention. The use of tetracycline antibiotics in pig farms has a facilitating effect on the prevalence of the tetX family, but the relationship among its presence, expression, and resistance phenotype in resistant bacteria is unknown. In this study, the presence and expression characteristics of tetracycline resistance genes (TRGs) in 89 strains of doxycycline-resistant E. coli (DRE) isolated from pig manure samples from 20 pig farms under low concentrations of doxycycline stress (2 µg/mL) were analyzed. The detection rate of tetO was 96.63%, which is higher than those of other TRGs, such as tetA (94.38%), tetX (76.40%), tetB (73.03%), and tet(X4) (69.66%). At least three TRG types were present in DRE strains, which thus showed extensive resistance to tetracycline antibiotics, and 37% of these strains were resistant to tigecycline. In the presence of a low concentration of doxycycline, tetA played an important role, and the expression and existence ratio of TRGs indicated low expression of TRGs. Furthermore, the doxycycline resistance of DRE was jointly determined by the total absolute abundance of TRGs, and the absolute abundance of tetX and tet(X4) was significantly positively associated with tigecycline resistance in DRE (P < 0.05). Overall, DRE isolated from swine manure is an important reservoir of the tetX family, which suggests that DRE in swine manure has a high risk of tigecycline resistance, poses a potential threat to human health, and should be of public concern.


Assuntos
Escherichia coli , Esterco , Humanos , Suínos , Animais , Tigeciclina/farmacologia , Escherichia coli/genética , Esterco/microbiologia , Doxiciclina , Antibacterianos/farmacologia , Tetraciclina , Testes de Sensibilidade Microbiana
14.
Vet Microbiol ; 274: 109575, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191572

RESUMO

The pre- and post-weaning stages for piglets are critical periods for the maturation of intestinal functions and contamination with antibiotic resistant bacterial pathogens will threaten their intestinal health. The presence of bacteriophage can also alter bacterial populations in the intestine but whether transmission of antibiotic resistance genes (ARG) is affected by phage during maturation of the neonatal piglet intestine is not known. We therefore identified the intestinal virome along with ARGs and mobile genetic elements (MGE) from piglet fecal samples collected from 3 to 28 days representing the different growth stages. We found wide fluctuations for the intestinal virome of weaning piglets and most virus - related antibiotic resistance was derived from temperate phage suggesting a reservoir of multidrug resistance was present in the neonatal porcine gut. Our results provide a comprehensive understanding of ARGs associated with the intestinal virome that therefore represents a potential risk for horizontal ARG transfer to pathogenic bacteria.


Assuntos
Antibacterianos , Bacteriófagos , Animais , Suínos , Antibacterianos/farmacologia , Viroma , Resistência Microbiana a Medicamentos/genética , Bactérias , Genes Bacterianos , Bacteriófagos/genética
15.
Sci Total Environ ; 849: 157837, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35934031

RESUMO

Treated wastewater from livestock farms is an important reservoir for antibiotic resistance genes (ARGs), and is a main source of ARGs in the environment. However, the distribution and driving factors of ARGs in treated wastewater from different types of livestock farms are rarely reported. In this study, treated wastewater from 69 large-scale livestock farms of different types, including broiler, layer, and pig farms, was collected, and 11 subtypes of ARGs, 2 mobile genetic elements (MGEs) and bacterial community structure were analyzed. The results revealed detection rates of NDM-1 and mcr-1 of 90 % and 43 %, respectively, and the detection rates of other ARGs were 100 %. The relative abundance of ARGs, such as tetA, tetX and strB, in broiler farms was significantly higher than that in layer farms, but the bacterial α diversity was significantly lower than that in other farm types. Furthermore, although the treatment process had a greater impact on the physicochemical properties of the treated wastewater than the livestock type, livestock type was the main factor affecting the bacterial community in the treated wastewater. The analysis of potential host bacteria of ARGs revealed significant differences in the host bacteria of ARGs in treated wastewater from different types of livestock farms. The host bacteria of ARGs in broiler farms mainly belonged to Actinobacteria, layer farms mainly belonged to Proteobacteria, and pig farms mainly belonged to Firmicutes. Additionally, redundancy analysis showed that the distribution of ARGs may have resulted from the combination of multiple driving factors in different types of livestock farms, among which tnpA and NH4+-N were the main influencing factors. This study revealed multiple driving factors for the distribution of typical ARGs in treated wastewater from different types of livestock farms, providing basic data for the prevention and control of ARG pollution in agricultural environments.


Assuntos
Gado , Águas Residuárias , Animais , Antibacterianos/análise , Bactérias/genética , Galinhas/genética , Resistência Microbiana a Medicamentos/genética , Fazendas , Genes Bacterianos , Suínos , Águas Residuárias/análise
16.
Sci Total Environ ; 851(Pt 2): 158364, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041618

RESUMO

Advanced wastewater treatment plants are widely used in most large-scale pig farms in southern China. However, the fate of antibiotic resistance genes (ARGs) and their association with bacterial and archaeal communities during advanced wastewater treatment remain unclear. In this study, the profiles of ARGs in typical advanced wastewater treatment plants were surveyed using metagenomic analysis. The results showed that 279- 326 different subtypes of ARGs were detected in raw wastewater, with a total abundance of 5.98 ± 0.48 copies per bacterial cell. During the advanced wastewater treatment, the abundance and number of ARGs were significantly reduced. Microbial communities (bacteria and archaea) contributed the most to the variation in ARG abundance and composition (PCA axis_1), accounting for 10.8 % and 15.7 %, respectively, followed by mobile genetic elements (MGEs) and physicochemical factors. Special attention should be given to potential pathogenic bacteria such as Escherichia, Streptococcus, Enterococcus and Staphylococcus and archaea such as Methanocorpusculum, Candidatus Methanoplasma and Candidatus Methanomethylophilus, which were important potential ARG hosts. Bacterial communities may indirectly affect ARG variation by affecting archaeal communities. These findings indicated that ARG levels in pig farm wastewater can be effectively reduced during advanced treatment and highlighted the important role played by archaea, which should not be ignored.


Assuntos
Antibacterianos , Águas Residuárias , Suínos , Animais , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Fazendas , Archaea/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
17.
Microbiol Spectr ; 10(3): e0200421, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604139

RESUMO

At present, growth-promoting antibiotics are banned in the pig industry in many countries, but therapeutic antibiotics can still be used normally. However, the effect of therapeutic antibiotics on the structure and function of the intestinal bacterial community and its recovery is still unclear. We analyzed the effects of enrofloxacin on the pig manure bacterial community and functional genes during dosing and without dosing. Enrofloxacin caused significant changes in community structure. The changes in the diversity and structure of the bacterial community were the most obvious on the fifth day, and most of the differentially abundant genera (19/29) belonged to Firmicutes. The structure of the manure bacterial community in the low concentration enrofloxacin group was completely reverted after 10 days of drug discontinuation. In addition, enrofloxacin had a significant impact on the abundance of bacterial functional genes. Most of the differentially abundant functional genes of the manure bacterial community were significantly enriched, especially genes related to metabolic pathways, for adaptation to the antibiotic environment. Moreover, exposure to enrofloxacin increased the abundance of functional genes related to nitrogen metabolism in the manure bacterial community, and the total nitrogen content of pig manure was significantly reduced. The functional genetic differences caused by enrofloxacin exposure were completely reverted 10 days after drug discontinuation. The results of the present study suggest that enrofloxacin induces changes in the structure and function of manure bacterial communities, which may be rapidly recovered after drug discontinuation. IMPORTANCE A stable intestinal bacterial community balance is beneficial for animal health. Enrofloxacin is widely used in animal husbandry as a therapeutic drug, but it can cause intestinal environmental imbalance. Enrofloxacin is widely present in groundwater, pork, etc., which leads to a greater risk of human exposure. The effect of enrofloxacin on the structure and function of the intestinal bacterial community and its recovery is still unclear. In this study, we found that enrofloxacin, as a therapeutic drug, can enhance nitrogen metabolism in the manure bacterial community. Moreover, the structure and function of the manure bacterial community in the low concentration enrofloxacin group may be completely reverted 10 days after drug discontinuation. This study provides a reference for the effect of enrofloxacin exposure on the intestinal bacterial community.


Assuntos
Bactérias , Esterco , Animais , Antibacterianos , Bactérias/genética , Enrofloxacina , Genes Bacterianos , Esterco/microbiologia , Nitrogênio , Solo , Suínos
18.
Front Microbiol ; 13: 795101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547153

RESUMO

The acquisition and development of the mammalian microbiome early in life are critical to establish a healthy host-microbiome symbiosis. Despite recent advances in understanding microbial sources in infants, the relative contribution of various microbial sources to the colonization of the gut microbiota in pigs remains unclear. Here, we longitudinally sampled the microbiota of 20 sow-piglet pairs (three piglets per sow) reared under identical conditions from multiple body sites and the surrounding weaning environment from birth to 28 days postpartum (1,119 samples in total). Source-tracking analysis revealed that the contribution of various microbial sources to the piglet gut microbiome gradually changed over time. The neonatal microbiota was initially sparsely populated, and the predominant contribution was from the maternal vaginal microbiota that increased gradually from 69.0% at day 0 to 89.3% at day 3 and dropped to 0.28% at day 28. As the piglets aged, the major microbial community patterns were most strongly associated with the sow feces and slatted floor, with contributions increasing from 0.52 and 9.6% at day 0 to 62.1 and 33.8% at day 28, respectively. The intestinal microbial diversity, composition, and function significantly changed as the piglets aged, and 30 age-discriminatory bacterial taxa were identified with distinctive time-dependent shifts in their relative abundance, which likely reflected the effect of the maternal and environmental microbial sources on the selection and adaptation of the piglet gut microbiota. Overall, these data demonstrate that the vaginal microbiota is the primary source of the gut microbiota in piglets within 3 days after birth and are gradually replaced by the sow fecal and slatted floor microbiota over time. These findings may offer novel strategies to promote the establishment of exogenous symbiotic microbes to improve piglet gut health.

19.
Sci Total Environ ; 836: 155692, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35525356

RESUMO

The increasing risks of antibiotic resistance genes (ARGs) in livestock feces have attracted global attention. However, how the rhythmic activity of ARGs changes in fecal microbiota remains largely unclear. In our study, we collected 52 fresh fecal samples every 6 h over 72 h from laying hens and characterized circadian oscillations of bacteria and ARGs using an approach based on assembled metagenome shotgun sequencing. We found that 14% of commensal bacterial taxonomic units fluctuated over 24 h. A total of 33 out of 281 ARGs and 17 of 574 mobile genetic elements (MGEs) featured rhythmic patterns in feces. lnuC and ANT(6)H-lb were the two most abundant ARGs with circadian oscillation identified from feces, and they increased during the day and decreased at night. Acetate, butyrate, propionate, and 78 out of 392 MetaCyc pathways relating to short-chain fatty acid (SCFA) metabolism featured circadian oscillations. Assessment of the above ARG-other element connections revealed that 17 ARGs presented strong correlations with 7 MGEs, and 2 SCFAs (acetate and propanoate) and bacterial species in feces. Structural equation model (SEM) analysis showed that ARGs were directly affected by microbial ß-diversity and MGEs. These results showed a comprehensive map of ARGs over 24 h and revealed circadian oscillations of ARGs, which are influenced by key bacterial species, MGEs, and metabolites. Together, our findings advance comprehension of circadian oscillations of ARGs in the fecal microbiota and provide a reference for ARGs control and management.


Assuntos
Metagenoma , Microbiota , Animais , Antibacterianos/farmacologia , Bactérias/genética , Galinhas/genética , Resistência Microbiana a Medicamentos/genética , Feminino , Genes Bacterianos
20.
NPJ Biofilms Microbiomes ; 8(1): 18, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383199

RESUMO

The gut microbiota plays a key role in host metabolic thermogenesis by activating UCP1 and increasing the browning process of white adipose tissue (WAT), especially in cold environments. However, the crosstalk between the gut microbiota and the host, which lacks functional UCP1, making them susceptible to cold stress, has rarely been illustrated. We used male piglets as a model to evaluate the host response to cold stress via the gut microbiota (four groups: room temperature group, n = 5; cold stress group, n = 5; cold stress group with antibiotics, n = 5; room temperature group with antibiotics, n = 3). We found that host thermogenesis and insulin resistance increased the levels of serum metabolites such as glycocholic acid (GCA) and glycochenodeoxycholate acid (GCDCA) and altered the compositions and functions of the cecal microbiota under cold stress. The gut microbiota was characterized by increased levels of Ruminococcaceae, Prevotellaceae, and Muribaculaceae under cold stress. We found that piglets subjected to cold stress had increased expression of genes related to bile acid and short-chain fatty acid (SCFA) metabolism in their liver and fat lipolysis genes in their fat. In addition, the fat lipolysis genes CLPS, PNLIPRP1, CPT1B, and UCP3 were significantly increased in the fat of piglets under cold stress. However, the use of antibiotics showed a weakened or strengthened cold tolerance phenotype, indicating that the gut microbiota plays important role in host thermogenesis. Our results demonstrate that the gut microbiota-blood-liver and fat axis may regulate thermogenesis during cold acclimation in piglets.


Assuntos
Microbioma Gastrointestinal , Aclimatação , Tecido Adiposo Branco/metabolismo , Animais , Resposta ao Choque Frio , Microbioma Gastrointestinal/fisiologia , Masculino , Suínos , Termogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA