Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Commun ; 5(3): 100775, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38050356

RESUMO

The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.


Assuntos
Alternaria , Arabidopsis , Alternaria/metabolismo , Ácido Tenuazônico/metabolismo , Oxigênio Singlete/metabolismo , Virulência , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240033

RESUMO

Griseofulvin was considered an effective agent for cancer therapy in past decades. Although the negative effects of griseofulvin on microtubule stability are known, the exact target and mechanism of action in plants remain unclear. Here, we used trifluralin, a well-known herbicide targeting microtubules, as a reference and revealed the differences in root tip morphology, reactive oxygen species production (ROS), microtubule dynamics, and transcriptome analysis between Arabidopsis treated with griseofulvin and trifluralin to elucidate the mechanism of root growth inhibition by griseofulvin. Like trifluralin, griseofulvin inhibited root growth and caused significant swelling of the root tip due to cell death induced by ROS. However, the presence of griseofulvin and trifluralin caused cell swelling in the transition zone (TZ) and meristematic zone (MZ) of root tips, respectively. Further observations revealed that griseofulvin first destroyed cortical microtubules in the cells of the TZ and early elongation zone (EZ) and then gradually affected the cells of other zones. The first target of trifluralin is the microtubules in the root MZ cells. Transcriptome analysis showed that griseofulvin mainly affected the expression of microtubule-associated protein (MAP) genes rather than tubulin genes, whereas trifluralin significantly suppressed the expression of αß-tubulin genes. Finally, it was proposed that griseofulvin could first reduce the expression of MAP genes, meanwhile increasing the expression of auxin and ethylene-related genes to disrupt microtubule alignment in root tip TZ and early EZ cells, induce dramatic ROS production, and cause severe cell death, eventually leading to cell swelling in the corresponding zones and inhibition of root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubulina (Proteína)/metabolismo , Arabidopsis/metabolismo , Griseofulvina/farmacologia , Griseofulvina/metabolismo , Trifluralina/metabolismo , Trifluralina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Raízes de Plantas/metabolismo
3.
Plant J ; 111(2): 360-373, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506331

RESUMO

Oomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens. In this study, we report the identification and functional characterization of miR398b and its cis-NAT, the core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase gene (AtC2GnT), in plant immunity. Gain- and loss-of-function assays revealed that miR398b mediates Arabidopsis thaliana susceptibility to Phytophthora parasitica by targeting Cu/Zn-Superoxidase Dismutase1 (CSD1) and CSD2, leading to suppressed expression of CSD1 and CSD2 and decreased plant disease resistance. We further showed that AtC2GnT transcripts could inhibit the miR398b-CSDs module via inhibition of pri-miR398b expression, leading to elevated plant resistance to P. parasitica. Furthermore, quantitative reverse transcription PCR, RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE), and transient expression assays indicated that miR398b suppresses the expression of AtC2GnT. We generated AtC2GnT-silenced A. thaliana plants by CRISPR/Cas9 or RNA interference methods, and the Nicotiana benthamiana NbC2GnT-silenced plants by virus-induced gene silencing. Pathogenicity assays showed that the C2GnT-silenced plants were more susceptible, while AtC2GnT-overexpressing plants exhibited elevated resistance to P. parasitica. AtC2GnT encodes a Golgi-localized protein, and transient expression of AtC2GnT enhanced N. benthamiana resistance to Phytophthora pathogens. Taken together, our results revealed a positive role of AtC2GnT and a negative regulatory loop formed by miR398b and AtC2GnT in regulating plant resistance to P. parasitica.


Assuntos
Arabidopsis , Phytophthora , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Regulação da Expressão Gênica de Plantas , Phytophthora/fisiologia , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA