Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958578

RESUMO

The emergence of phage-resistant bacterial strains is one of the biggest challenges for phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive trade-offs, which supports a therapeutic strategy called "phage steering". The key to phage steering is to guide the bacterial population toward an evolutionary direction that is favorable for treatment. Thus, it is important to systematically investigate the impacts of phages targeting different bacterial receptors on the fitness of the bacterial population. Herein, we employed 20 different phages to impose strong evolutionary pressure on the host Pseudomonas aeruginosa PAO1 and examined the genetic and phenotypic responses of their phage-resistant mutants. Among these strains with impaired adsorptions, four types of mutations associated with bacterial receptors were identified, namely, lipopolysaccharides (LPSs), type IV pili (T4Ps), outer membrane proteins (OMPs), and exopolysaccharides (EPSs). PAO1, responding to LPS- and EPS-dependent phage infections, mostly showed significant growth impairment and virulence attenuation. Most mutants with T4P-related mutations exhibited a significant decrease in motility and biofilm formation ability, while the mutants with OMP-related mutations required the lowest fitness cost out of the bacterial populations. Apart from fitness costs, PAO1 strains might lose their resistance to antibiotics when counteracting with phages, such as the presence of large-fragment mutants in this study, which may inspire the usage of phage-antibiotic combination strategies. This work provides methods that leverage the merits of phage resistance relative to obtaining therapeutically beneficial outcomes with respect to phage-steering strategies.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Virulência , Lipopolissacarídeos , Evolução Biológica , Antibacterianos , Pseudomonas aeruginosa/fisiologia
2.
Microbiol Resour Announc ; 12(4): e0122322, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36861969

RESUMO

We report the complete genome sequence of the phage BUCT-3589, infecting multidrug-resistant Klebsiella pneumoniae 3589. It is a new member of the genus Przondovirus in the family Autographiviridae and possesses a double-stranded DNA (dsDNA) genome of 40,757 bp with 53.13% GC content. The genome sequence will support its use as a therapeutic agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA