Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 80(5): 981-994, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802842

RESUMO

BACKGROUND: The endogenous purine 8-aminoguanine induces diuresis/natriuresis/glucosuria by inhibiting PNPase (purine nucleoside phosphorylase); however, mechanistic details are unknown. METHODS: Here, we further explored in rats 8-aminoguanine's effects on renal excretory function by combining studies using intravenous 8-aminoguanine, intrarenal artery infusions of PNPase substrates (inosine and guanosine), renal microdialysis, mass spectrometry, selective adenosine receptor ligands, adenosine receptor knockout rats, laser doppler blood flow analysis, cultured renal microvascular smooth muscle cells, HEK293 cells expressing A2B receptors and homogeneous time resolved fluorescence assay for adenylyl cyclase activity. RESULTS: Intravenous 8-aminoguanine caused diuresis/natriuresis/glucosuria and increased renal microdialysate levels of inosine and guanosine. Intrarenal inosine, but not guanosine, exerted diuretic/natriuretic/glucosuric effects. In 8-aminoguanine-pretreated rats, intrarenal inosine did not induce additional diuresis/natriuresis/glucosuria. 8-Aminoguanine did not induce diuresis/natriuresis/glucosuria in A2B-receptor knockout rats, yet did so in A1- and A2A-receptor knockout rats. Inosine's effects on renal excretory function were abolished in A2B knockout rats. Intrarenal BAY 60-6583 (A2B agonist) induced diuresis/natriuresis/glucosuria and increased medullary blood flow. 8-Aminoguanine increased medullary blood flow, a response blocked by pharmacological inhibition of A2B, but not A2A, receptors. In HEK293 cells expressing A2B receptors, inosine activated adenylyl cyclase, and this was abolished by MRS 1754 (A2B antagonist). In renal microvascular smooth muscle cells, 8-aminoguanine and forodesine (PNPase inhibitor) increased inosine and 3',5'-cAMP; however, in cells from A2B knockout rats, 8-aminoguanine and forodesine did not augment 3',5'-cAMP yet increased inosine. CONCLUSIONS: 8-Aminoguanine induces diuresis/natriuresis/glucosuria by increasing renal interstitial levels of inosine which, via A2B receptor activation, increases renal excretory function, perhaps in part by increasing medullary blood flow.


Assuntos
Adenilil Ciclases , Diurese , Ratos , Humanos , Animais , Adenilil Ciclases/farmacologia , Células HEK293 , Diuréticos/farmacologia , Natriurese , Receptores Purinérgicos P1 , Inosina/farmacologia
2.
Biochem Pharmacol ; 201: 115076, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551915

RESUMO

BACKGROUND: 8-Aminoguanine exerts natriuretic and antihypertensive activity. Whether and how "free" 8-aminoguanine exists in vivo is unclear. Because 8-nitroguanosine is naturally occurring, we tested the hypothesis that 8-aminoguanine can arise from: pathway 1, 8-nitroguanosine â†’ 8-aminoguanosine â†’ 8-aminoguanine; and pathway 2, 8-nitroguanosine â†’ 8-nitroguanine â†’ 8-aminoguanine. METHODS: 8-Aminoguanine biosynthesis was explored in rats using renal microdialysis, mass spectrometry and enzyme kinetics. RESULTS: In Sprague-Dawley rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine; 8-nitroguanine infusions increased 8-aminoguanine. Purine nucleoside phosphorylase (PNPase) converted 8-nitroguanosine to 8-nitroguanine and 8-aminoguanosine to 8-aminoguanine. Forodesine (PNPase inhibitor) reduced metabolism of 8-nitroguanosine by pathway 2 and shunted metabolism of 8-nitroguanosine to 8-aminoguanosine. In Dahl salt-sensitive rats, 8-nitroguanosine infusions increased kidney levels of 8-nitroguanine, 8-aminoguanosine and 8-aminoguanine. These results indicate that both pathways 1 and 2 participate in the biosynthesis of 8-aminoguanine in Sprague-Dawley and Dahl rats. Endogenous 8-aminoguanine in kidneys and urine were elevated many-fold in Dahl, compared to Sprague-Dawley, rats. The increased levels of 8-aminoguanine in Dahl rats were not due to alterations in pathways 1 and 2 but were associated with increased urine levels of endogenous 8-nitroguanosine suggesting that the "upstream" production of 8-nitroguanosine was increased in Dahl rats. Dahl rats are known to have high levels of peroxynitrite, and peroxynitrite is known to nitrate guanosine in biomolecules. Here we confirm that a peroxynitrite donor increases kidney levels of 8-aminoguanine. CONCLUSION: 8-Aminoguanine occurs naturally via two distinct pathways and kidney levels of 8-aminoguanine are increased in Dahl rats, likely due to increased production of 8-nitroguanosine, a by-product of peroxynitrite chemistry.


Assuntos
Hipertensão , Ácido Peroxinitroso , Animais , Anti-Hipertensivos , Guanina/análogos & derivados , Hipertensão/metabolismo , Rim/metabolismo , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley
3.
J Pharmacol Exp Ther ; 382(2): 135-148, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609923

RESUMO

8-Aminoguanine and 8-aminoguanosine (via metabolism to 8-aminoguanine) are endogenous 8-aminopurines that induce diuresis, natriuresis, and glucosuria by inhibiting purine nucleoside phosphorylase (PNPase); moreover, both 8-aminopurines cause antikaliuresis by other mechanisms. Because 8-aminoinosine and 8-aminohypoxanthine are structurally similar to 8-aminoguanosine and 8-aminoguanine, respectively, we sought to define their renal excretory effects. First, we compared the ability of 8-aminoguanine, 8-aminohypoxanthine, and 8-aminoinosine to inhibit recombinant PNPase. These compounds inhibited PNPase with a potency order of 8-aminoguanine > 8-aminohypoxanthine = 8-aminoinosine. Additional studies showed that 8-aminoinosine is a competitive substrate that is metabolized to a competitive PNPase inhibitor, namely 8-aminohypoxanthine. Administration of each 8-aminopurine (33.5 µmol/kg) reduced the guanine-to-guanosine and hypoxanthine-to-inosine ratios in urine, a finding confirming their ability to inhibit PNPase in vivo. All three 8-aminopurines induced diuresis, natriuresis, and glucosuria; however, the glucosuric effects of 8-aminohypoxanthine and 8-aminoinosine were less pronounced than those of 8-aminoguanine. Neither 8-aminohypoxanthine nor 8-aminoinosine altered potassium excretion, whereas 8-aminoguanine caused antikaliuresis. In vivo administration of 8-aminoinosine increased 8-aminohypoxanthine excretion, indicating that 8-aminohypoxanthine mediates, in part, the effects of 8-aminoinosine. Finally, 8-aminohypoxanthine was metabolized to 8-aminoxanthine by xanthine oxidase. Using ultraperformance liquid chromatography-tandem mass spectrometry, we identified 8-aminoinosine as an endogenous 8-aminopurine. In conclusion, 8-aminopurines have useful pharmacological profiles. To induce diuresis, natriuresis, glucosuria, and antikaliuresis, 8-aminoguanine (or its prodrug 8-aminoguanosine) would be preferred. If only diuresis and natriuresis, without marked glucosuria or antikaliuresis, is desired, 8-aminohypoxanthine or 8-aminoinosine might be useful. Finally, here we report the in vivo existence of another pharmacologically active 8-aminopurine, namely 8-aminoinosine. SIGNIFICANCE STATEMENT: Here, we report that a family of 8-aminopurines affects renal excretory function: effects that may be useful for treating multiple diseases including hypertension, heart failure, and chronic kidney disease. For diuresis and natriuresis accompanied by glucosuria and antikaliuresis, 8-aminoguanine (or its prodrug 8-aminoguanosine) would be useful; if only diuresis and natriuresis is called for, 8-aminohypoxanthine or 8-aminoinosine would be useful. Previously, we identified 8-aminoguanine and 8-aminoguanosine as endogenous 8-aminopurines; here, we extend the family of endogenous 8-aminopurines to include 8-aminoinosine.


Assuntos
Glicosúria , Pró-Fármacos , Humanos , Diurese , Diuréticos/farmacologia , Natriurese , Pró-Fármacos/farmacologia , Purina-Núcleosídeo Fosforilase/farmacologia
4.
Am J Physiol Renal Physiol ; 321(2): F135-F148, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34151589

RESUMO

Cell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and downregulating the NF-κB pathway. KIM-1 cleavage blunts its anti-inflammatory activities. We reported that mucin 1 (MUC1) is protective in a mouse model of ischemia-reperfusion injury (IRI). As both KIM-1 and MUC1 are induced in the proximal tubule (PT) during IRI and are a disintegrin and metalloprotease 17 (ADAM17) substrates, we tested the hypothesis that MUC1 protects KIM-1 activity. Muc1 knockout (KO) mice and wild-type (WT) littermates were subjected to IRI. KIM-1, MUC1, and ADAM17 levels (and signaling pathways) were assessed by immunoblot analysis. PT localization was assessed by confocal microscopy and an in situ proximity ligation assay. Findings were extended using human kidneys and urine as well as KIM-1-mediated efferocytosis assays in mouse PT cultures. In response to tubular injury in mouse and human kidneys, we observed induction and coexpression of KIM-1 and MUC1 in the PT. Compared with WT mice, Muc1 KO mice had higher urinary KIM-1 and lower kidney KIM-1. KIM-1 was apical in the PT of WT kidneys but predominately with luminal debris in Muc1 KO mice. Efferocytosis was reduced in Muc1 KO PT cultures compared with WT cultures, whereas inflammation was increased in Muc1 KO kidneys compared with WT kidneys. MUC1 was cleaved by ADAM17 in PT cultures and blocked KIM-1 shedding in Madin-Darby canine kidney cells. We conclude that KIM-1-mediated efferocytosis and thus anti-inflammatory activity during IRI is preserved in the injured kidney by MUC1 inhibition of KIM-1 shedding.NEW & NOTEWORTHY KIM-1 plays a key role in the recovery of the tubule epithelium during renal IRI by mediating efferocytosis and associated signaling that suppresses inflammation. Excessive cleavage of KIM-1 by ADAM17 provides a decoy receptor that aggravates efferocytosis and subsequent signaling. Our data from experiments in mice, patients, and cultured cells show that MUC1 is also induced during IRI and competes with KIM-1 for cleavage by ADAM17. Consequently, MUC1 protects KIM-1 anti-inflammatory activity in the damaged kidney.


Assuntos
Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Inflamação/metabolismo , Túbulos Renais Proximais/metabolismo , Rim/irrigação sanguínea , Mucina-1/metabolismo , Traumatismo por Reperfusão/metabolismo , Proteína ADAM17/metabolismo , Animais , Linhagem Celular , Cães , Humanos , Rim/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Mucina-1/genética , Fagocitose/fisiologia
5.
J Am Heart Assoc ; 10(6): e020088, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33682436

RESUMO

Background The long-term effects of dipeptidyl peptidase 4 (DPP4) inhibitors on blood pressure and cardiovascular and renal health remain controversial. Herein, we investigated the extended (>182 days) effects of DPP4 inhibition in a model of spontaneous hypertension, heart failure, diabetes mellitus, obesity and hyperlipidemia. Methods and Results Adult obese spontaneously hypertensive heart failure rats (SHHF) were implanted with radio transmitters for measurement of arterial blood pressures. Two weeks later, SHHF were randomized to receive either a DPP4 inhibitor (sitagliptin, 80 mg/kg per day in drinking water) or placebo. At the end of the radiotelemetry measurements, renal and cardiac function and histology, as well as other relevant biochemical parameters, were assessed. For the first 25 days, mean arterial blood pressures were similar in sitagliptin-treated versus control SHHF; afterwards, mean arterial blood pressures increased more in sitagliptin-treated SHHF (P<0.000001). The time-averaged mean arterial blood pressures from day 26 through 182 were 7.2 mm Hg higher in sitagliptin-treated SHHF. Similar changes were observed for systolic (8.6 mm Hg) and diastolic (6.1 mm Hg) blood pressures, and sitagliptin augmented hypertension throughout the light-dark cycle. Long-term sitagliptin treatment also increased kidney weights, renal vascular resistances, the excretion of kidney injury molecule-1 (indicates injury to proximal tubules), renal interstitial fibrosis, glomerulosclerosis, renal vascular hypertrophy, left ventricular dysfunction, right ventricular degeneration, and the ratios of collagen IV/collagen III and collagen IV/laminin in the right ventricle. Conclusions These findings indicate that, in some genetic backgrounds, long-term DPP4 inhibitor treatment is harmful and identify an animal model to study mechanisms of, and test ways to prevent, DPP4 inhibitor-induced pathological conditions.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Insuficiência Cardíaca/induzido quimicamente , Hipertensão/fisiopatologia , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Animais , Diástole , Modelos Animais de Doenças , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Hipertensão/diagnóstico , Rim/diagnóstico por imagem , Nefropatias/diagnóstico , Masculino , Ratos , Ratos Endogâmicos SHR
6.
Hypertension ; 76(4): 1308-1318, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829665

RESUMO

Here, we tested the hypothesis that TNAP (tissue nonspecific alkaline phosphatase) modulates vascular responsiveness to norepinephrine. In the isolated, Tyrode's-perfused rat mesentery, 50 µmol/L of L-p-bromotetramisole (L-p-BT; selective TNAP inhibitor, Ki=56 µmol/L) significantly reduced TNAP activity and caused a significant 9.0-fold rightward-shift in the norepinephrine concentration versus vasoconstriction relationship. At 100 µmol/L, L-p-BT further reduced mesenteric TNAP activity and caused an additional significant right-shift of the norepinephrine concentration versus vasoconstriction relationship. A higher concentration (200 µmol/L) of L-p-BT had no further effect on either mesenteric TNAP activity or norepinephrine-induced vasoconstriction. L-p-BT did not alter vascular responses to vasopressin, thus ruling-out nonspecific suppression of vascular reactivity. Since in the rat mesenteric vasculature α1-adrenoceptors mediate norepinephrine-induced vasoconstriction, these finding indicate that TNAP inhibition selectively interferes with α1-adrenoceptor signaling. Additional experiments showed that the effects of TNAP inhibition on norepinephrine-induced vasoconstriction were not mediated by accumulation of pyrophosphate or ATP (TNAP substrates) nor by reduced adenosine levels (TNAP product). TNAP inhibition significantly reduced the Hillslope of the norepinephrine concentration versus vasoconstriction relationship from 1.8±0.2 (consistent with positive cooperativity of α1-adrenoceptor signaling) to 1.0±0.1 (no cooperativity). Selective activation of A1-adenosine receptors, which are known to participate in coincident signaling with α1-adrenoceptors, reversed the suppressive effects of L-p-BT on norepinephrine-induced vasoconstriction. In vivo, L-p-BT administration achieved plasma levels of ≈60 µmol/L and inhibited mesenteric vascular responses to exogenous norepinephrine and sympathetic nerve stimulation. TNAP modulates vascular responses to norepinephrine likely by affecting positive cooperativity of α1-adrenoceptor signaling via a mechanism involving A1 receptor signaling.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Membrana/metabolismo , Mesentério/efeitos dos fármacos , Norepinefrina/farmacologia , Tetramizol/análogos & derivados , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Animais , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Mesentério/metabolismo , Ratos , Tetramizol/farmacologia , Xantinas/farmacologia
7.
Purinergic Signal ; 16(2): 187-211, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367441

RESUMO

The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,ß-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.


Assuntos
Nucleotídeos de Adenina/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Nucleotidases/metabolismo , Ratos
8.
Hypertension ; 75(1): 109-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786976

RESUMO

c-Kit+ progenitor smooth muscle cells (P-SMCs) can develop into SMCs that contribute to injury-induced neointimal thickening. Here, we investigated whether adenosine reduces P-SMC migration and proliferation and whether this contributes to adenosine's inhibitory actions on neointima formation. In human P-SMCs, 2-chloroadenosine (stable adenosine analogue) and BAY60-6583 (A2B agonist) inhibited P-SMC proliferation and migration. Likewise, increasing endogenous adenosine by blocking adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl) adenine (inhibits adenosine deaminase) and 5-iodotubercidin (inhibits adenosine kinase) attenuated P-SMC proliferation and migration. Neither N6-cyclopentyladenosine (A1 agonist), CGS21680 (A2A agonist), nor N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (A3 agonist) affected P-SMC proliferation or migration. 2-Chloroadenosine increased cyclic AMP, reduced Akt phosphorylation (activates cyclin D expression), and reduced levels of cyclin D1 (promotes cell-cycle progression). Moreover, 2-chloroadenosine inhibited expression of Skp2 (promotes proteolysis of p27Kip1) and upregulated levels of p27Kip1 (negative cell-cycle regulator). A2B receptor knockdown prevented the effects of 2-chloroadenosine on cyclic AMP production and P-SMC proliferation and migration. Likewise, inhibition of adenylyl cyclase and protein kinase A rescued P-SMCs from the inhibitory effects of 2-chloroadenosine. The inhibitory effects of adenosine were similar in male and female P-SMCs. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 µmol/L for 7 days) reduced neointimal hyperplasia by 64.5% (P<0.05; intima/media ratio: control, 1.4±0.02; treated, 0.53±0.012) and reduced neointimal c-Kit+ cells. Adenosine inhibits P-SMC migration and proliferation via the A2B receptor/cyclic AMP/protein kinase A axis, which reduces cyclin D1 expression and activity via inhibiting Akt phosphorylation and Skp2 expression and upregulating p27kip1 levels. Adenosine attenuates neointima formation in part by inhibiting infiltration and proliferation of c-Kit+ P-SMCs.


Assuntos
2-Cloroadenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , Adenina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Aminopiridinas/farmacologia , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fenetilaminas/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R783-R790, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789788

RESUMO

The discovery in 2009 that 2',3'-cAMP exists in biological systems was rapidly followed by identification of 2',3'-cGMP in cell and tissue extracts. To determine whether 2',3'-cGMP exists in mammals under physiological conditions, we used ultraperformance LC-MS/MS to measure 2',3'-cAMP and 2',3'-cGMP in timed urine collections (via direct bladder cannulation) from 25 anesthetized mice. Urinary excretion rates (means ± SE) of 2',3'-cAMP (15.5 ± 1.8 ng/30 min) and 2',3'-cGMP (17.9 ± 1.9 ng/30 min) were similar. Mice also excreted 2'-AMP (3.6 ± 1.1 ng/20 min) and 3'-AMP (9.5 ± 1.2 ng/min), hydrolysis products of 2',3'-cAMP, and 2'-GMP (4.7 ± 1.7 ng/30 min) and 3'-GMP (12.5 ± 1.8 ng/30 min), hydrolysis products of 2',3'-cGMP. To validate that the chromatographic signals were from these endogenous noncanonical nucleotides, we repeated these experiments in mice (n = 18) lacking 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), an enzyme known to convert 2',3'-cyclic nucleotides to their corresponding 2'-nucleotides. In CNPase-knockout mice, urinary excretions of 2',3'-cAMP, 3'-AMP, 2',3'-cGMP, and 3'-GMP were increased, while urinary excretions of 2'-AMP and 2'-GMP were decreased. Infusions of exogenous 2',3'-cAMP increased urinary excretion of 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine, whereas infusions of exogenous 2',3'-cGMP increased excretion of 2',3'-cGMP, 2'-GMP, 3'-GMP, and guanosine. Together, these data suggest the endogenous existence of not only a 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP/3'-AMP → adenosine), which was previously identified, but also a 2',3'-cGMP-guanosine pathway (2',3'-cGMP → 2'-GMP/3'-GMP → guanosine), observed here for the first time. Because it is well known that adenosine and guanosine protect tissues from injury, our data support the concept that both pathways may work together to protect tissues from injury.


Assuntos
Nucleotídeos de Adenina/urina , Nucleotídeos de Guanina/urina , Guanosina/urina , Eliminação Renal , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Animais , Cromatografia Líquida , Feminino , Masculino , Camundongos Knockout , Espectrometria de Massas em Tandem , Fatores de Tempo , Urinálise
10.
Hypertension ; 72(2): 511-521, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941515

RESUMO

The influence of adenosine receptors on blood pressure in salt-sensitive hypertension is unknown. Here, we examined the effects of salt diets on arterial blood pressures (radiotelemetry) in female and male Dahl salt-sensitive wild-type versus female and male Dahl salt-sensitive A1, A2A, or A2B receptor knockouts (A1KOs, A2AKOs, and A2BKOs, respectively). At baseline, all rats were on a 0.3% salt diet; then separate groups were switched to either 4% or 8% salt diet for 2 weeks. Compared with wild-types, baseline pressures were not affected by knockout of A1 or A2B receptors; yet, mean, systolic, and diastolic pressures were significantly (P<0.01) higher in A2AKOs versus wild-types, an effect independent of sex. During the second week on a 4% salt diet, mean, systolic, and diastolic blood pressures (mm Hg, mean±SEM) in female A1KOs (176±5, 209±5, and 147±4, respectively) and A2BKOs (166±8, 198±9, and 139±8, respectively) were significantly lower (P<0.001) than wild-type on a 4% salt diet (202±4, 240±5, and 172±3, respectively). Male A1KOs and A2BKOs were not protected against 4% salt diet-induced hypertension. This female advantage was overwhelmed by an 8% salt diet. Female and male A2AKOs were more salt sensitive, a phenotype that was apparent in male A2AKOs on 4% and 8% salt diets and in females on 8% salt diet. Female A1KOs and A2BKOs were less susceptible to salt-induced stroke and experienced improved survival. Adenosine receptors influence blood pressure and survival in salt-sensitive rats, and the impact of deleting adenosine receptors on blood pressure and survival depends on salt diet and sex.


Assuntos
Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica , RNA/genética , Receptores Purinérgicos P1/genética , Cloreto de Sódio na Dieta/farmacologia , Animais , Dieta Hipossódica , Modelos Animais de Doenças , Feminino , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos Dahl , Receptores Purinérgicos P1/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Am Heart Assoc ; 7(21): e010085, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30608204

RESUMO

Background 8-Aminoguanosine and 8-aminoguanine are K+-sparing natriuretics that increase glucose excretion. Most effects of 8-aminoguanosine are due to its metabolism to 8-aminoguanine. However, the mechanism by which 8-aminoguanine affects renal function is unknown and is the focus of this investigation. Methods and Results Because 8-aminoguanine has structural similarities with inhibitors of the epithelial sodium channel (ENaC), Na+/H+ exchangers, and adenosine A1 receptors, we examined the effects of 8-aminoguanine on EN aC activity in mouse collecting duct cells, on intracellular pH of human proximal tubular epithelial cells, on responses to a selective A1-receptor agonist in vivo, and on renal excretory function in A1-receptor knockout rats. These experiments showed that 8-aminoguanine did not block EN aC, Na+/H+ exchangers, or A1 receptors. Because Rac1 enhances activity of mineralocorticoid receptors and some guanosine analogues inhibit Rac1, we examined the effects of 8-aminoguanine on Rac1 activity in mouse collecting duct cells. Rac1 activity was significantly inhibited by 8-aminoguanine. Because in vitro 8-aminoguanine is a purine nucleoside phosphorylase ( PNP ase) inhibitor, we examined the effects of a natriuretic dose of 8-aminoguanine on urinary excretion of PNP ase substrates and products. 8-Aminoguanine increased and decreased, respectively, urinary excretion of PNP ase substrates and products. Next we compared in rats the renal effects of intravenous doses of 9-deazaguanine ( PNP ase inhibitor) versus 8-aminoguanine. 8-Aminoguanine and 9-deazaguanine induced similar increases in urinary Na+ and glucose excretion, yet only 8-aminoguanine reduced K+ excretion. Nsc23766 (Rac1 inhibitor) mimicked the effects of 8-aminoguanine on K+ excretion. Conclusions 8-Aminoguanine increases Na+ and glucose excretion by blocking PNP ase and decreases K+ excretion by inhibiting Rac1.


Assuntos
Diurese/efeitos dos fármacos , Glicosúria Renal/induzido quimicamente , Guanina/análogos & derivados , Natriurese/efeitos dos fármacos , Potássio/urina , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Guanina/efeitos adversos , Guanina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Eliminação Renal
12.
J Pharmacol Exp Ther ; 363(3): 358-366, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928119

RESUMO

8-Aminoguanosine induces diuresis, natriuresis, glucosuria, and antikaliuresis. These effects could be mediated via 8-aminoguanosine's metabolism to 8-aminoguanine. In this study, we tested this hypothesis in anesthetized rats. First, we demonstrated that at 55- to 85-minutes post-i.v. administration, 8-aminoguanosine and 8-aminoguanine (33.5 µmol/kg) significantly increased urine volume [ml/30 min: 8-aminoguanosine from 0.3 ± 0.1 to 0.9 ± 0.1 (mean ± S.E.M.; n = 7); 8-aminoguanine from 0.3 ± 0.1 to 1.5 ± 0.2 (n = 8)], sodium excretion (µmol/30 min: 8-aminoguanosine from 12 ± 5 to 109 ± 21; 8-aminoguanine from 18 ± 8 to 216 ± 31), and glucose excretion (µg/30 min: 8-aminoguanosine from 18 ± 3 to 159 ± 41; 8-aminoguanine from 17 ± 3 to 298 ± 65). Both compounds significantly decreased potassium excretion (µmol/30 min: 8-aminoguanosine from 62 ± 7 to 39 ± 9; 8-aminoguanine from 61 ± 10 to 34 ± 6). Next, we administered 8-aminoguanosine and 8-aminoguanine i.v. (33.5 µmol/kg) and measured renal interstitial (microdialysis probes) 8-aminoguanosine and 8-aminoguanine. The i.v. administration of 8-aminoguanosine and 8-aminoguanine similarly increased renal medullary interstitial levels of 8-aminoguanine [nanograms per milliliter; 8-aminoguanosine from 4 ± 1 to 1025 ± 393 (n = 6), and 8-aminoguanine from 2 ± 1 to 1069 ± 407 (n = 6)]. Finally, we determine the diuretic, natriuretic, glucosuric, and antikaliuretic effects of intrarenal artery infusions of 8-aminoguanosine and 8-aminoguanine (0.1, 0.3, and 1 µmol/kg/min). 8-Aminoguanine increased urine volume and sodium and glucose excretion by the ipsilateral kidney, yet had only mild effects at the highest dose in the contralateral kidney. Intrarenal infusions of 8-aminoguanosine did not induce diuresis, natriuresis, or glucosuria in either the ipsilateral or contralateral kidney, yet decreased potassium excretion in the ipsilateral kidney. Together these data confirm that the diuretic, natriuretic, and glucosuric effects of 8-aminoguanosine are not direct, but require metabolism to 8-aminoguanine. However, 8-aminoguanosine has direct antikaliuretic effects.


Assuntos
Diuréticos/farmacologia , Glicosúria/urina , Guanina/análogos & derivados , Guanosina/análogos & derivados , Hiperpotassemia/tratamento farmacológico , Natriuréticos/farmacologia , Animais , Diuréticos/metabolismo , Guanina/metabolismo , Guanina/farmacologia , Guanosina/metabolismo , Guanosina/farmacologia , Guanosina/uso terapêutico , Hiperpotassemia/metabolismo , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Masculino , Natriuréticos/metabolismo , Ratos Sprague-Dawley , Urodinâmica/efeitos dos fármacos
13.
J Pharmacol Exp Ther ; 359(3): 420-435, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27679494

RESUMO

In vivo, guanine moieties in DNA, RNA, guanine nucleotides, or guanosine or guanine per se can undergo nitration (for example, by peroxynitrite) or hydroxylation (for example, by superoxide anion) on position 8 of the purine ring. Subsequent catabolism of these modified biomolecules leads to the production of a diverse group of 8-nitro, 8-amino, and 8-hydroxy guanosine and guanine compounds. Indeed, studies suggest the in vivo existence of 8-nitroguanosine, 8-nitroguanine, 8-aminoguanosine, 8-aminoguanine, 8-hydroxyguanosine, 8-hydroxy-2'-deoxyguanosine, and 8-hydroxyguanine. Since a multitude of these compounds exist in vivo, and since the renal effects of 8-substituted guanosine and guanine compounds are entirely unknown, we examined the effects of guanosine, guanine, 8-nitroguanosine, 8-nitroguanine, 8-hydroxyguanosine, 8-hydroxyguanine, 8-hydroxy-2'-deoxyguanosine, 8-aminoguanosine, and 8-aminoguanine (33.5 µmol/kg/min; intravenous infusion for 115 minutes) on excretion of sodium, potassium, and glucose in rats. Guanosine, 8-nitroguanosine, and 8-hydroxy-2'-deoxyguanosine had minimal natriuretic activity. Guanine, 8-nitroguanine, 8-hydroxyguanosine, and 8-hydroxyguanine had moderate natriuretic activity (increased sodium excretion by 9.4-, 7.8-, 7.1-, and 8.6-fold, respectively). In comparison with all other compounds, 8-aminoguanosine and 8-aminoguanine were highly efficacious and increased sodium excretion by 26.6- and 17.2-fold, respectively, exceeding that of a matched dose of amiloride (13.6-fold increase). 8-Aminoguanosine and 8-aminoguanine also increased glucose excretion by 12.1- and 12.2-fold, respectively, and decreased potassium excretion by 69.1 and 71.0%, respectively. Long-term radiotelemetry studies demonstrated that oral 8-aminoguanosine and 8-aminoguanine (5 mg/kg/day) suppressed deoxycorticosterone/salt-induced hypertension. These experiments demonstrate that some naturally occurring 8-substitued guanosine and guanine compounds, particularly 8-aminoguanosine and 8-aminoguanine, are potent and efficacious potassium-sparing diuretics/natriuretics that may represent a novel class of antihypertensive diuretics.


Assuntos
Anti-Hipertensivos/farmacologia , Diuréticos/farmacologia , Glicosúria/tratamento farmacológico , Guanina/análogos & derivados , Guanosina/análogos & derivados , Natriurese/efeitos dos fármacos , Animais , Anti-Hipertensivos/uso terapêutico , Diuréticos/uso terapêutico , Guanina/farmacologia , Guanina/uso terapêutico , Guanosina/farmacologia , Guanosina/uso terapêutico , Masculino , Ratos , Ratos Sprague-Dawley
14.
J Am Soc Nephrol ; 27(7): 2069-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26574047

RESUMO

A positional isomer of 3',5'-cAMP, 2',3'-cAMP, is produced by kidneys in response to energy depletion, and renal 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) metabolizes 2',3'-cAMP to 2'-AMP; 2',3'-cAMP is a potent opener of mitochondrial permeability transition pores (mPTPs), which can stimulate autophagy. Because autophagy protects against AKI, it is conceivable that inhibition of CNPase protects against ischemia-reperfusion (IR) -induced AKI. Therefore, we investigated renal outcomes, mitochondrial function, number, area, and autophagy in CNPase-knockout (CNPase(-/-)) versus wild-type (WT) mice using a unique two-kidney, hanging-weight model of renal bilateral IR (20 minutes of ischemia followed by 48 hours of reperfusion). Analysis of urinary purines showed attenuated metabolism of 2',3'-cAMP to 2'-AMP in CNPase(-/-) mice. Neither genotype nor IR affected BP, heart rate, urine volume, or albumin excretion. In WT mice, renal IR reduced (14)C-inulin clearance (index of GFR) and increased renal vascular resistance (measured by transit time nanoprobes) and urinary excretion of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. IR did not affect these parameters in CNPase(-/-) mice. Histologic analysis revealed that IR induced severe damage in kidneys from WT mice, whereas histologic changes were minimal after IR in CNPase(-/-) mice. Measurements of renal cardiolipin levels, citrate synthase activity, rotenone-sensitive NADH oxidase activity, and proximal tubular mitochondrial and autophagosome area and number (by transmission electron microscopy) indicted accelerated autophagy/mitophagy in injured CNPase(-/-) mice. We conclude that CNPase deletion attenuates IR-induced AKI, in part by accelerating autophagy with targeted removal of damaged mitochondria.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/fisiologia , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/etiologia , Animais , Feminino , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/complicações , Índice de Gravidade de Doença
15.
Hypertension ; 66(6): 1207-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416848

RESUMO

The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N(6)-cyclopentyladenosine, CGS21680, or N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B receptor profile). 2-Chloroadenosine increased cAMP, reduced phosphorylation (activation) of ERK and Akt (protein kinases known to increase cyclin D expression and activity, respectively), and reduced levels of cyclin D1 (cyclin that promotes cell-cycle progression in G1). Moreover, 2-chloroadenosine inhibited expression of S-phase kinase-associated protein-2 (Skp2; promotes proteolysis of p27(Kip1)) and upregulated levels of p27(Kip1) (cell-cycle regulator that impairs cyclin D function). 2-Chloroadenosine also inhibited signaling downstream of cyclin D, including hyperphosphorylation of retinoblastoma protein and expression of cyclin A (S phase cyclin). Knockdown of A2B receptors prevented the effects of 2-chloroadenosine on ERK1/2, Akt, Skp2, p27(Kip1), cyclin D1, cyclin A, and proliferation. Likewise, inhibition of adenylyl cyclase and protein kinase A abrogated 2-chloroadenosine's inhibitory effects on Skp2 and stimulatory effects on p27(Kip1) and rescued HCASMCs from 2-chloroadenosine-mediated inhibition. Knockdown of p27(Kip1) also reversed the inhibitory effects of 2-chloroadenosine on HCASMC proliferation. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 µmol/L for 7 days) downregulated vascular expression of Skp2, upregulated vascular expression of p27(Kip1), and reduced neointima hyperplasia by 71% (P<0.05; neointimal thickness: control, 37 424±18 371 pixels; treated, 10 352±2824 pixels). In conclusion, the adenosine/A2B receptor/cAMP/protein kinase A axis inhibits HCASMC proliferation by blocking multiple signaling pathways (ERK1/2, Akt, and Skp2) that converge at cyclin D, a key G1 cyclin that controls cell-cycle progression.


Assuntos
Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Ciclina D/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , 2-Cloroadenosina/farmacologia , Animais , Western Blotting , Proliferação de Células/genética , Células Cultivadas , Vasos Coronários/citologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclina D/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Miócitos de Músculo Liso/metabolismo , Interferência de RNA , Ratos Endogâmicos WKY , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/metabolismo , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/genética
16.
Sci Rep ; 5: 9377, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25827478

RESUMO

Pleckstrin homology domain and leucine rich repeat protein phosphatase 1 (PHLPP1) is a member of the serine/threonine family of phosphatases. It has been studied in organs including brain, heart, pancreas, adipose, breast, and prostate. Human PHLPP1 encodes two splice variants - PHLPP1α (~140-150 kDa) and PHLPP1ß (~180-190 kDa). Commercial antibodies are widely used to characterize PHLPP1 proteins in cells/tissues. Here we validate five different antibodies to detect PHLPP1α/ß by Western blot using PHLPP1 WT/KO mice. All antibodies recognize PHLPP1ß in brain. Only a single antibody (Cosmo Bio Co) detects PHLPP1α (~145-150 kDa). The other four antibodies detect a non-specific signal at ~150 kDa as evidenced by its abundance in PHLPP1 KO tissues. Results suggest Cosmo antibody is a better reagent to detect PHLPP1α by Western blot. In contrast, we found it unsuitable for immunofluorescence applications in brain. Our findings caution interpretation of the ~150 kDa band detected by some PHLPP1 antibodies in rodent and human tissues. Results also recapitulate the importance of including molecular weight standards in Western blot data to simplify retrospective analysis.


Assuntos
Encéfalo/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Isoformas de Proteínas
17.
Hypertension ; 65(1): 238-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368027

RESUMO

UNLABELLED: Because the effects of dipeptidyl peptidase 4 (DPP4) inhibitors on blood pressure are controversial, we examined the long-term effects of sitagliptin (80 mg/kg per day) on blood pressure (radiotelemetry) in spontaneously hypertensive rats (SHR), Wistar-Kyoto rats, and Zucker Diabetic-Sprague Dawley rats (metabolic syndrome model). In SHR, chronic (3 weeks) sitagliptin significantly increased systolic, mean, and diastolic blood pressures by 10.3, 9.2, and 7.9 mm Hg, respectively, a response abolished by coadministration of BIBP3226 (2 mg/kg per day; selective Y1-receptor antagonist). Sitagliptin also significantly increased blood pressure in SHR treated with hydralazine (vasodilator; 25 mg/kg per day) or enalapril (angiotensin-converting enzyme inhibitor; 10 mg/kg per day). In Wistar-Kyoto rats, chronic sitagliptin slightly decreased systolic, mean, and diastolic blood pressures (-1.8, -1.1, and -0.4 mm Hg, respectively). In Zucker Diabetic-Sprague Dawley rats, chronic sitagliptin decreased systolic, mean, and diastolic blood pressures by -7.7, -5.8, and -4.3 mm Hg, respectively, and did not alter the antihypertensive effects of chronic enalapril. Because DPP4 inhibitors impair the metabolism of neuropeptide Y1-36 (NPY1-36; Y1-receptor agonist) and glucagon-like peptide (GLP)-1(7-36)NH2 (GLP-1 receptor agonist), we examined renovascular responses to NPY1-36 and GLP-1(7-36)NH2 in isolated perfused SHR and Zucker Diabetic-Sprague Dawley kidneys pretreated with norepinephrine (to induce basal tone). In Zucker Diabetic-Sprague Dawley kidneys, NPY1-36 and GLP-1(7-36)NH2 exerted little, if any, effect on renovascular tone. In contrast, in SHR kidneys, both NPY1-36 and GLP-1(7-36)NH2 elicited potent and efficacious vasoconstriction. IN CONCLUSION: (1) The effects of DPP4 inhibitors on blood pressure are context dependent; (2) The context-dependent effects of DPP4 inhibitors are due in part to differential renovascular responses to DPP4's most important substrates (NPY1­36 and GLP-1(7­36)NH2) [corrected]; (3) Y1 receptor antagonists may prevent the prohypertensive and possibly augment the antihypertensive effects of DPP4 inhibitors.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipertensão/tratamento farmacológico , Pirazinas/farmacologia , Triazóis/farmacologia , Animais , Determinação da Pressão Arterial , Dipeptidil Peptidase 4/efeitos dos fármacos , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fosfato de Sitagliptina , Resultado do Tratamento
18.
J Pharmacol Exp Ther ; 350(3): 719-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002416

RESUMO

In cultured renal cells and isolated perfused kidneys, extracellular guanosine augments extracellular adenosine and inosine (the major renal metabolite of adenosine) levels by altering the extracellular disposition of these purines. The present study addressed whether this "guanosine-adenosine mechanism" exists in vivo. In rats (n = 15), intravenous infusions of adenosine (1 µmol/kg per minute) decreased mean arterial blood pressure (MABP) from 114 ± 4 to 83 ± 5 mm Hg, heart rate (HR) from 368 ± 11 to 323 ± 9 beats/min), and renal blood flow (RBF) from 6.2 ± 0.5 to 5.3 ± 0.6 ml/min). In rats (n = 15) pretreated with intravenous guanosine (10 µmol/kg per minute), intravenous adenosine (1 µmol/kg per minute) decreased MABP (from 109 ± 4 to 58 ± 5 mm Hg), HR (from 401 ± 10 to 264 ± 20 beats/min), and RBF (from 6.2 ± 0.7 to 1.7 ± 0.3). Two-factor analysis of variance (2F-ANOVA) revealed a significant interaction (P < 0.0001) between guanosine and adenosine for MABP, HR, and RBF. In control rats, the urinary excretion rate of endogenous inosine was 211 ± 103 ng/30 minutes (n = 9); however, in rats treated with intravenous guanosine (10 µmol/kg per minute), the excretion rate of inosine was 1995 ± 300 ng/30 minutes (n = 12; P < 0.0001 versus controls). Because adenosine inhibits inflammatory cytokine production, we also examined the effects of intravenous guanosine on endotoxemia-induced increases in tumor necrosis factor-α (TNF-α). In control rats (n = 7), lipopolysaccharide (LPS; Escherichia coli 026:B6 endotoxin; 30 mg/kg) increased plasma TNF-α from 164 ± 56 to 4082 ± 730 pg/ml, whereas in rats pretreated with intravenous guanosine (10 µmol/kg per minute; n = 6), LPS increased plasma TNF-α from 121 ± 45 to 1821 ± 413 pg/ml (2F-ANOVA interaction effect, P = 0.0022). We conclude that the guanosine-adenosine mechanism exists in vivo and that guanosine may be a useful therapeutic for reducing inflammation.


Assuntos
Adenosina/administração & dosagem , Adenosina/sangue , Guanosina/administração & dosagem , Guanosina/sangue , Animais , Interações Medicamentosas/fisiologia , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley
19.
Physiol Rep ; 2(5)2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24872359

RESUMO

In cell culture, extracellular guanosine increases extracellular adenosine by attenuating the disposition of extracellular adenosine (American Journal of Physiology - Cell Physiology 304: C406-C421, 2013). The goal of this investigation was to determine whether this "guanosine-adenosine mechanism" is operative in an intact organ. Twenty-seven isolated, perfused mouse kidneys were subjected to metabolic poisons (iodoacetate plus 2,4-dinitrophenol) to cause energy depletion and thereby stimulate renal adenosine production. Adenosine levels in the renal venous perfusate increased from a baseline of 36 ± 8 to 499 ± 96, 258 ± 50, and 71 ± 13 nmol/L at 15, 30, and 60 min, respectively, after administering metabolic poisons (% of basal; 1366 ± 229, 715 ± 128, and 206 ± 33, respectively). Changes in renal venous levels of guanosine closely mirrored the time course of changes in adenosine: baseline of 15 ± 2 to 157 ± 13, 121 ± 8, and 50 ± 5 nmol/L at 15, 30, and 60 min, respectively (% of basal; 1132 ± 104, 871 ± 59, and 400 ± 51, respectively). Freeze-clamp experiments in 12 kidneys confirmed that metabolic poisons increased kidney tissue levels of adenosine and guanosine. In eight additional kidneys, we examined the ability of guanosine to reduce the renal clearance of exogenous adenosine; and these experiments revealed that guanosine significantly decreased the renal extraction of adenosine. Because guanosine is metabolized by purine nucleoside phosphorylase (PNPase), in another set of 16 kidneys we examined the effects of 8-aminoguanine (PNPase inhibitor) on renal venous levels of adenosine and inosine (adenosine metabolite). Kidneys treated with 8-aminoguanine showed a more robust increase in both adenosine and inosine in response to metabolic poisons. We conclude that in the intact kidney, guanosine regulates adenosine levels.

20.
Am J Physiol Renal Physiol ; 307(1): F14-24, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24808540

RESUMO

Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Monofosfato de Adenosina/metabolismo , AMP Cíclico/metabolismo , Rim/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Adenosina/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Ratos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA