Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Neurophysiol ; 132(3): 770-780, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39081210

RESUMO

Implicit sensorimotor adaptation keeps our movements well calibrated amid changes in the body and environment. We have recently postulated that implicit adaptation is driven by a perceptual error: the difference between the desired and perceived movement outcome. According to this perceptual realignment model, implicit adaptation ceases when the perceived movement outcome-a multimodal percept determined by a prior belief conveying the intended action, the motor command, and feedback from proprioception and vision-is aligned with the desired movement outcome. Here, we examined the role of proprioception in implicit motor adaptation and perceived movement outcome by examining individuals who experience deafferentation (i.e., individuals with impaired proprioception and touch). We used a modified visuomotor rotation task designed to isolate implicit adaptation and probe perceived movement outcomes throughout the experiment. Surprisingly, both implicit adaptation and perceived movement outcome were minimally impacted by chronic deafferentation, posing a challenge to the perceptual realignment model of implicit adaptation.NEW & NOTEWORTHY We tested six individuals with chronic somatosensory deafferentation on a novel task that isolates implicit sensorimotor adaptation and probes perceived movement outcome. Strikingly, both implicit motor adaptation and perceptual movement outcome were not significantly impacted by chronic deafferentation, posing a challenge for theoretical models of adaptation that involve proprioception.


Assuntos
Adaptação Fisiológica , Propriocepção , Desempenho Psicomotor , Humanos , Propriocepção/fisiologia , Adaptação Fisiológica/fisiologia , Masculino , Feminino , Desempenho Psicomotor/fisiologia , Adulto , Pessoa de Meia-Idade , Movimento/fisiologia , Idoso , Distúrbios Somatossensoriais/fisiopatologia
2.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711691

RESUMO

Implicit sensorimotor adaptation keeps our movements well-calibrated amid changes in the body and environment. We have recently postulated that implicit adaptation is driven by a perceptual error: the difference between the desired and perceived movement outcome. According to this perceptual re-alignment model, implicit adaptation ceases when the perceived movement outcome - a multimodal percept determined by a prior belief conveying the intended action, the motor command, and feedback from proprioception and vision - is aligned with the desired movement outcome. Here, we examined the role of proprioception in implicit motor adaptation and perceived movement outcome by examining individuals who lack proprioception. We used a modified visuomotor rotation task designed to isolate implicit adaptation and probe perceived outcome throughout the experiment. Surprisingly, implicit adaptation and perceived outcome were minimally impacted by deafferentation, posing a challenge to the perceptual re-alignment model of implicit adaptation.

3.
Behav Res Methods ; 56(2): 1052-1063, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36781700

RESUMO

Optical markerless hand-tracking systems incorporated into virtual reality (VR) headsets are transforming the ability to assess fine motor skills in VR. This promises to have far-reaching implications for the increased applicability of VR across scientific, industrial, and clinical settings. However, so far, there are little data regarding the accuracy, delay, and overall performance of these types of hand-tracking systems. Here we present a novel methodological framework based on a fixed grid of targets, which can be easily applied to measure these systems' absolute positional error and delay. We also demonstrate a method to assess finger joint-angle accuracy. We used this framework to evaluate the Meta Quest 2 hand-tracking system. Our results showed an average fingertip positional error of 1.1cm, an average finger joint angle error of 9.6∘ and an average temporal delay of 45.0 ms. This methodological framework provides a powerful tool to ensure the reliability and validity of data originating from VR-based, markerless hand-tracking systems.


Assuntos
Mãos , Realidade Virtual , Humanos , Reprodutibilidade dos Testes , Dedos , Interface Usuário-Computador
4.
Neuroimage ; 274: 120145, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121374

RESUMO

Therapeutic options to restore responsiveness in patients with prolonged disorder of consciousness (PDOC) are limited. We have recently shown that a single session of tDCS over M1 delivered at rest can reduce thalamic self-inhibition during motor command following. Here, we build upon this by exploring whether pairing tDCS with a concurrent passive mobilisation protocol can further influence thalamo-M1 dynamics and whether these changes are enhanced after multiple stimulation sessions. Specifically, we used Dynamic Causal Modelling (DCM) of functional magnetic resonance imaging (fMRI) data from 22 healthy participants to assess changes in effective connectivity within the motor network during active thumb movements after 1 or 5 sessions of tDCS paired with passive mobilisations of the thumb. We found that a single anodal tDCS session decreased self-inhibition in M1, with five sessions further enhancing this effect. In addition, anodal tDCS increased thalamo-M1 excitation as compared to cathodal stimulation, with the effects maintained after 5 sessions. Together, our results suggest that pairing anodal tDCS with passive mobilisation across multiple sessions may facilitate thalamo-cortical dynamics that are relevant for behavioural responsiveness in PDOC. More broadly, they offer a mechanistic window into the neural underpinnings of the cumulative effects of multi-session tDCS.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Polegar , Córtex Motor/fisiologia , Encéfalo/fisiologia , Estimulação Magnética Transcraniana , Potencial Evocado Motor/fisiologia
5.
Brain Stimul ; 16(2): 431-441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720304

RESUMO

BACKGROUND: Transcranial direct current stimulation (TDCS) is typically applied before or during a task, for periods ranging from 5 to 30 min. HYPOTHESIS: We hypothesise that briefer stimulation epochs synchronous with individual task actions may be more effective. METHODS: In two separate experiments, we applied brief bursts of event-related anodal stimulation (erTDCS) to the cerebellum during a visuomotor adaptation task. RESULTS: The first study demonstrated that 1 s duration erTDCS time-locked to the participants' reaching actions enhanced adaptation significantly better than sham. A close replication in the second study demonstrated 0.5 s erTDCS synchronous with the reaching actions again resulted in better adaptation than standard TDCS, significantly better than sham. Stimulation either during the inter-trial intervals between movements or after movement, during assessment of visual feedback, had no significant effect. Because short duration stimulation with rapid onset and offset is more readily perceived by the participants, we additionally show that a non-electrical vibrotactile stimulation of the scalp, presented with the same timing as the erTDCS, had no significant effect. CONCLUSIONS: We conclude that short duration, event related, anodal TDCS targeting the cerebellum enhances motor adaptation compared to the standard model. We discuss possible mechanisms of action and speculate on neural learning processes that may be involved.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Cerebelo/fisiologia , Aprendizagem/fisiologia , Adaptação Fisiológica/fisiologia , Movimento
6.
Brain Stimul ; 15(3): 750-757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533836

RESUMO

BACKGROUND: There is a current discord between the foundational theories underpinning motor learning and how we currently apply transcranial direct current stimulation (TDCS): the former is dependent on tight coupling of events while the latter is conducted with very low temporal resolution. OBJECTIVE: Here we aimed to investigate the temporal specificity of stimulation by applying TDCS in short epochs, and coincidentally with movement, during a motor adaptation task. METHODS: Participants simultaneously adapted a reaching movement to two opposing velocity-dependent force-fields (clockwise and counter-clockwise), distinguished by a contextual leftward or rightward shift in the task display and cursor location respectively. Brief bouts (<3 s) of event-related TDCS (er-TDCS) were applied over M1 or the cerebellum during movements for only one of these learning contexts. RESULTS: We show that when short duration stimulation is applied to the cerebellum and yoked to movement, only those reaching movements performed simultaneously with stimulation are selectively enhanced, whilst similar and interleaved movements are left unaffected. We found no evidence of improved adaptation following M1 er-TDCS, as participants displayed equivalent levels of error during both stimulated and unstimulated movements. Similarly, participants in the sham stimulation group adapted comparably during left and right-shift trials. CONCLUSIONS: It is proposed that the coupling of cerebellar stimulation and movement influences timing-dependent (i.e. Hebbian-like) mechanisms of plasticity to facilitate enhanced learning in the stimulated context.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Adaptação Fisiológica/fisiologia , Cerebelo/fisiologia , Humanos , Aprendizagem/fisiologia , Córtex Motor/fisiologia
7.
J Neurophysiol ; 127(2): 519-528, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044854

RESUMO

A consistent finding in sensorimotor adaptation is a persistent undershoot of full compensation, such that performance asymptotes with residual errors greater than seen at baseline. This behavior has been attributed to limiting factors within the implicit adaptation system, which reaches a suboptimal equilibrium between trial-by-trial learning and forgetting. However, recent research has suggested that allowing longer motor planning periods prior to movement eliminates these residual errors. The additional planning time allows required cognitive processes to be completed before movement onset, thus increasing accuracy. Here, we looked to extend these findings by investigating the relationship between increased motor preparation time and the size of imposed visuomotor rotation (30°, 45°, or 60°), with regard to the final asymptotic level of adaptation. We found that restricting preparation time to 0.35 s impaired adaptation for moderate and larger rotations, resulting in larger residual errors compared to groups with additional preparation time. However, we found that even extended preparation time failed to eliminate persistent errors, regardless of magnitude of cursor rotation. Thus, the asymptote of adaptation was significantly less than the degree of imposed rotation, for all experimental groups. In addition, there was a positive relationship between asymptotic error and implicit retention. These data suggest that a prolonged motor preparation period is insufficient to reliably achieve complete adaptation, and therefore, our results suggest that factors beyond that of planning time contribute to asymptotic adaptation levels.NEW & NOTEWORTHY Residual errors in sensorimotor adaptation are commonly attributed to an equilibrium between trial-by-trial learning and forgetting. Recent research suggested that allowing sufficient time for mental rotation eliminates these errors. In a number of experimental conditions, we show that although restricted motor preparation time does limit adaptation-consistent with mental rotation-extending preparation time fails to eliminate the residual errors in motor adaptation.


Assuntos
Adaptação Fisiológica/fisiologia , Imaginação/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
8.
Neuroimage ; 247: 118781, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879252

RESUMO

Transcranial direct current stimulation (tDCS) is attracting increasing interest as a potential therapeutic route for unresponsive patients with prolonged disorders of consciousness (PDOC). However, research to date has had mixed results. Here, we propose a new direction by directly addressing the mechanisms underlying lack of responsiveness in PDOC, and using these to define our targets and the success of our intervention in the healthy brain first. We report 2 experiments that assess whether tDCS to the primary motor cortex (M1-tDCS; Experiment 1) and the cerebellum (cb-tDCS; Experiment 2) administered at rest modulate thalamo-cortical coupling in a subsequent command following task typically used to clinically assess awareness. Both experiments use sham- and polarity-controlled, randomised, double-blind, crossover designs. In Experiment 1, 22 participants received anodal, cathodal, and sham M1-tDCS sessions while in the MRI scanner. A further 22 participants received the same protocol with cb-tDCS in Experiment 2. We used Dynamic Causal Modelling of fMRI to characterise the effects of tDCS on brain activity and dynamics during simple thumb movements in response to command. We found that M1-tDCS increased thalamic excitation and that Cathodal cb-tDCS increased excitatory coupling from thalamus to M1. All these changes were polarity specific. Combined, our experiments demonstrate that tDCS can successfully modulate long range thalamo-cortical dynamics during command following via targeting of cortical regions. This suggests that M1- and cb-tDCS may allow PDOC patients to overcome the motor deficits at the root of their reduced responsiveness, improving their rehabilitation options and quality of life as a result.


Assuntos
Transtornos da Consciência/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Encéfalo/fisiopatologia , Mapeamento Encefálico , Cerebelo/fisiopatologia , Método Duplo-Cego , Estimulação Elétrica , Potencial Evocado Motor , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiopatologia , Vias Neurais , Qualidade de Vida , Adulto Jovem
9.
Exp Brain Res ; 239(7): 2043-2061, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33909112

RESUMO

Studies of chronically deafferented participants have illuminated how regaining some motor control after adult-onset loss of proprioceptive and touch input depends heavily on cognitive control. In this study we contrasted the performance of one such man, IW, with KS, a woman born without any somatosensory fibres. We postulated that her life-long absence of proprioception and touch might have allowed her to automate some simple visually-guided actions, something IW appears unable to achieve. We tested these two, and two age-matched control groups, on writing and drawing tasks performed with and without an audio-verbal echoing task that added a cognitive demand. In common with other studies of skilled action, the dual task was shown to affect visuo-motor performance in controls, with less well-controlled drawing and writing, evident as increases in path speed and reduction in curvature and trial duration. We found little evidence that IW was able to automate even the simplest drawing tasks and no evidence for automaticity in his writing. In contrast, KS showed a selective increase in speed of signature writing under the dual-task conditions, suggesting some ability to automate her most familiar writing. We also tested tracing of templates under mirror-reversed conditions, a task that imposes a powerful cognitive planning challenge. Both IW and KS showed evidence of a visuo-motor planning conflict, as did the controls, for shapes with sharp corners. Overall, IW was much faster than his controls to complete tracing shapes, consistent with an absence of visuo-proprioceptive conflict, whereas KS was slower than her controls, especially as the corners became sharper. She dramatically improved after a short period of practice while IW did not. We conclude that KS, who developed from birth without proprioception, may have some visually derived control of movement not under cognitive control, something not seen in IW. This allowed her to automate some writing and drawing actions, but impaired her initial attempts at mirror-tracing. In contrast, IW, who lost somatosensation as an adult, cannot automate these visually guided actions.


Assuntos
Propriocepção , Desempenho Psicomotor , Adulto , Feminino , Humanos , Masculino , Tato
10.
Sci Rep ; 11(1): 4464, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627717

RESUMO

Adaptation of movements involving the proximal and distal upper-limb can be differentially facilitated by anodal transcranial direct current stimulation (TDCS) over the cerebellum and primary motor cortex (M1). Here, we build on this evidence by demonstrating that cathodal TDCS impairs motor adaptation with a differentiation of the proximal and distal upper-limbs, relative to the site of stimulation. Healthy young adults received M1 or cerebellar cathodal TDCS while making fast 'shooting' movements towards targets under 60° rotated visual feedback conditions, using either whole-arm reaching or fine hand and finger movements. As predicted, we found that cathodal cerebellar TDCS resulted in impairment of adaptation of movements with the whole arm compared to M1 and sham groups, which proved significantly different during late adaptation. However, cathodal cerebellar TDCS also significantly enhanced adaptation of hand movements, which may reflect changes in the excitability of the pathway between the cerebellum and M1. We found no evidence for change of adaptation rates using arm or finger movements following cathodal TDCS directly over M1. These results are further evidence to support movement specific effects of TDCS, and highlight how the connectivity and functional organisation of the cerebellum and M1 must be considered when designing TDCS-based therapies.


Assuntos
Adaptação Fisiológica/fisiologia , Braço/fisiologia , Cerebelo/fisiologia , Mãos/fisiologia , Movimento/fisiologia , Adolescente , Adulto , Estimulação Elétrica/métodos , Eletrodos , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Desempenho Psicomotor , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem
11.
Exp Brain Res ; 239(2): 557-574, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33315127

RESUMO

Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.


Assuntos
Propriocepção , Desempenho Psicomotor , Adaptação Fisiológica , Idoso , Retroalimentação Sensorial , Humanos , Movimento
12.
Front Hum Neurosci ; 14: 230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655387

RESUMO

Mind-wandering is associated with switching our attention to internally directed thoughts and is by definition an intrinsic, self-generated cognitive function. Interestingly, previous research showed that it may be possible to modulate its propensity externally, with transcranial direct current stimulation (tDCS) targeting different regions in the default mode and executive control networks (ECNs). However, these studies used highly heterogeneous montages (targeting the dorsolateral prefrontal cortex (DLPFC), the right inferior parietal lobule (IPL), or both concurrently), often showed contradicting results, and in many cases failed to replicate. Our study aimed to establish whether tDCS of the default mode network (DMN), via targeting the right IPL alone, could modulate mind-wandering propensity using a within-subjects double-blind, counterbalanced design. Participants completed sustained attention to response task (SART) interspersed with thought-probes to capture their subjective reports of mind-wandering before and after receiving anodal, cathodal, or sham tDCS over the right IPL (with the reference over the left cheek). We found evidence for the lack of an effect of stimulation on subjective reports of mind-wandering (JZS-BF01 = 5.19), as well as on performance on the SART task (errors (JZS-BF01 = 6.79) and reaction time (JZS-BF01 = 5.94). Overall, we failed to replicate previous reports of successful modulations of mind-wandering propensity with tDCS over the IPL, instead of providing evidence in support of the lack of an effect. This and other recent unsuccessful replications call into question whether it is indeed possible to externally modulate spontaneous or self-generated cognitive processes.

13.
Brain Stimul ; 13(3): 707-716, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289702

RESUMO

BACKGROUND: The cerebellum and primary motor cortex (M1) are crucial to coordinated and accurate movements of the upper limbs. There is also appreciable evidence that these two structures exert somewhat divergent influences upon proximal versus distal upper limb control. Here, we aimed to differentially regulate the contribution of the cerebellum and M1 to proximal and distal effectors during motor adaptation, with transcranial direct current stimulation (tDCS). For this, we employed tasks that promote similar motor demands, but isolate whole arm from hand/finger movements, in order to functionally segregate the hierarchy of upper limb control. METHODS: Both young and older adults took part in a visuomotor rotation task; where they adapted to a 60° visuomotor rotation using either a hand-held joystick (requiring finger/hand movements) or a 2D robotic manipulandum (requiring whole-arm reaching movements), while M1, cerebellar or sham tDCS was applied. RESULTS: We found that cerebellar stimulation improved adaptation performance when arm movements were required to complete the task, while in contrast stimulation of M1 enhanced adaptation during hand and finger movements only. This double-dissociation was replicated in an independent group of older adults, demonstrating that the behaviour remains intact in ageing. CONCLUSIONS: These results suggest that stimulation of distinct motor areas can selectively improve motor adaptation in the proximal and distal upper limb. This also highlights new ways in which tDCS might be best applied to achieve reliable rehabilitation of upper limb motor deficits.


Assuntos
Adaptação Fisiológica/fisiologia , Cerebelo/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Extremidade Superior/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Feminino , Humanos , Masculino , Movimento/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
14.
Psychol Res ; 84(4): 866-880, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30406829

RESUMO

The human nervous system displays such plasticity that we can adapt our motor behavior to various changes in environmental or body properties. However, how sensorimotor adaptation generalizes to new situations and new effectors, and which factors influence the underlying mechanisms, remains unclear. Here we tested the general hypothesis that differences across participants can be exploited to uncover what drives interlimb transfer. Twenty healthy adults adapted to prismatic glasses while reaching to visual targets with their dominant arm. Classic adaptation and generalization across movement directions were observed but transfer to the non-dominant arm was not significant and inter-individual differences were substantial. Interlimb transfer resulted for some participants in a directional shift of non-dominant arm movements that was consistent with an encoding of visuomotor adaptation in extrinsic coordinates. For some other participants, transfer was consistent with an intrinsic coordinate system. Simple and multiple regression analyses showed that a few kinematic parameters such as peak acceleration (or peak velocity) and variability of movement direction were correlated with interlimb transfer. Low peak acceleration and low variability were related to extrinsic transfer, while high peak acceleration and high variability were related to intrinsic transfer. Motor variability was also positively correlated with the magnitude of the after-effect systematically observed on the dominant arm. Overall, these findings on unconstrained movements support the idea that individual movement features could be linked to the sensorimotor adaptation and its generalization. The study also suggests that distinct movement characteristics may be related to different coordinate frames of action representations in the nervous system.


Assuntos
Adaptação Fisiológica/fisiologia , Pós-Efeito de Figura/fisiologia , Movimento/fisiologia , Transferência de Experiência/fisiologia , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Individualidade , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
15.
J Physiol ; 597(16): 4309-4324, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31240719

RESUMO

KEY POINTS: The application of conventional cryogenic magnetoencephalography (MEG) to the study of cerebellar functions is highly limited because typical cryogenic sensor arrays are far away from the cerebellum and naturalistic movement is not allowed in the recording. A new generation of MEG using optically pumped magnetometers (OPMs) that can be worn on the head during movement has opened up an opportunity to image the cerebellar electrophysiological activity non-invasively. We use OPMs to record human cerebellar MEG signals elicited by air-puff stimulation to the eye. We demonstrate robust responses in the cerebellum. OPMs pave the way for studying the neurophysiology of the human cerebellum. ABSTRACT: We test the feasibility of an optically pumped magnetometer-based magnetoencephalographic (OP-MEG) system for the measurement of human cerebellar activity. This is to our knowledge the first study investigating the human cerebellar electrophysiology using optically pumped magnetometers. As a proof of principle, we use an air-puff stimulus to the eyeball in order to elicit cerebellar activity that is well characterized in non-human models. In three subjects, we observe an evoked component at approx. 50 ms post-stimulus, followed by a second component at approx. 85-115 ms post-stimulus. Source inversion localizes both components in the cerebellum, while control experiments exclude potential sources elsewhere. We also assess the induced oscillations, with time-frequency decompositions, and identify additional sources in the occipital lobe, a region expected to be active in our paradigm, and in the neck muscles. Neither of these contributes to the stimulus-evoked responses at 50-115 ms. We conclude that OP-MEG technology offers a promising way to advance the understanding of the information processing mechanisms in the human cerebellum.


Assuntos
Cerebelo/fisiologia , Magnetoencefalografia , Adulto , Piscadela , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Exp Brain Res ; 237(9): 2167-2184, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31209510

RESUMO

Previous work has highlighted the role of haptic feedback for manual dexterity, in particular for the control of precision grip forces between the index finger and thumb. It is unclear how fine motor skills involving more than just two digits might be affected, especially given that loss of sensation from the hand affects many neurological patients, and impacts on everyday actions. To assess the functional consequences of haptic deficits on multi-digit grasp of objects, we studied the ability of three rare individuals with permanent large-fibre sensory loss involving the entire upper limb. All three reported difficulties in everyday manual actions (ABILHAND questionnaire). Their performance in a reach-grasp-lift task was compared to that of healthy controls. Twenty objects of varying shape, mass, opacity and compliance were used. In the reach-to-grasp phase, we found slower movement, larger grip aperture and less dynamic modulation of grip aperture in deafferented participants compared to controls. Hand posture during the lift phase also differed; deafferented participants often adopted hand postures that may have facilitated visual guidance, and/or reduced control complexity. For example, they would extend fingers that were not in contact with the object, or fold these fingers into the palm of the hand. Variability in hand postures was increased in deafferented participants, particularly for smaller objects. Our findings provide new insights into how the complex control required for whole hand actions is compromised by loss of haptic feedback, whose contribution is, thus, highlighted.


Assuntos
Retroalimentação Sensorial/fisiologia , Mãos/fisiopatologia , Destreza Motora/fisiologia , Postura/fisiologia , Propriocepção/fisiologia , Transtornos de Sensação/fisiopatologia , Percepção do Tato/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Neurosci Biobehav Rev ; 100: 19-34, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790636

RESUMO

Despite wide evidence suggesting anatomical and functional interactions between cortex, cerebellum and basal ganglia, the learning processes operating within them --often viewed as respectively unsupervised, supervised and reinforcement learning-- are studied in isolation, neglecting their strong interdependence. We discuss how those brain areas form a highly integrated system combining different learning mechanisms into an effective super-learning process supporting the acquisition of flexible motor behaviour. The term "super-learning" does not indicate a new learning paradigm. Rather, it refers to the fact that different learning mechanisms act in synergy as they: (a) affect neural structures often relying on the widespread action of neuromodulators; (b) act within various stages of cortical/subcortical pathways that are organised in pipeline to support multiple sensation-to-action mappings operating at different levels of abstraction; (c) interact through the reciprocal influence of the output compartments of different brain structures, most notably in the cerebello-cortical and basal ganglia-cortical loops. Here we articulate this new hypothesis and discuss empirical evidence supporting it by specifically referring to motor adaptation and sequence learning.


Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Animais , Humanos , Motivação/fisiologia , Vias Neurais/fisiologia , Reforço Psicológico
18.
Exp Brain Res ; 237(2): 531-545, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30478636

RESUMO

During normal healthy ageing there is a decline in the ability to control simple movements, characterised by increased reaction times, movement durations and variability. There is also growing evidence of age-related proprioceptive loss which may contribute to these impairments. However, this relationship has not been studied in detail for the upper limb. We recruited 20 younger adults (YAs) and 31 older adults (OAs) who each performed 2 tasks on a 2D robotic manipulandum. The first assessed dynamic proprioceptive acuity using active, multi-joint movements constrained by the robot to a pre-defined path. Participants made perceptual judgements of the lateral position of the unseen arm. The second task required fast, accurate and discrete movements to the same targets in the absence of visual feedback of the hand, and without robotic intervention. We predicted that the variable proprioceptive error (uncertainty range) assessed in Task 1 would be increased in physically inactive OAs and would predict increased movement variability in Task 2. Instead we found that physically inactive OAs had larger systematic proprioceptive errors (bias) than YAs (t[33] = 2.8, p = 0.009), and neither proprioceptive uncertainty nor bias was related to motor performance in either age group (all regression model R2 ≤ 0.06). We suggest that previously reported estimates of proprioceptive decline with ageing may be exaggerated by task demands and that the extent of these deficits is unrelated to control of discrete, rapid movement. The relationship between dynamic proprioceptive acuity and movement control in other tasks with greater emphasis on online feedback is still unclear and warrants further investigation.


Assuntos
Envelhecimento/fisiologia , Atividade Motora/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Idoso , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
19.
Front Psychol ; 9: 1322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131736

RESUMO

When navigating in a spatial environment or when hearing its description, we can develop a mental model which may be represented in the central nervous system in different coordinate systems such as an egocentric or allocentric reference frame. The way in which sensory experience influences the preferred reference frame has been studied with a particular interest for the role of vision. The present study investigated the influence of proprioception on human spatial cognition. To do so, we compared the abilities to form spatial models of two rare participants chronically deprived of proprioception (GL and IW) and healthy control participants. Participants listened to verbal descriptions of a spatial environment, and their ability to form and use a mental model was assessed with a distance-comparison task and a free-recall task. Given that the loss of proprioception has been suggested to specifically impair the egocentric reference frame, the deafferented individuals were expected to perform worse than controls when the spatial environment was described in an egocentric reference frame. Results revealed that in both tasks, one deafferented individual (GL) made more errors than controls while the other (IW) made less errors. On average, both GL and IW were slower to respond than controls, and reaction time was more variable for IW. Additionally, we found that GL but not IW was impaired compared to controls in visuo-spatial imagery, which was assessed with the Minnesota Paper Form Board Test. Overall, the main finding of this study is that proprioception can influence the time necessary to use spatial representations while other factors such as visuo-spatial abilities can influence the capacity to form accurate spatial representations.

20.
Exp Brain Res ; 236(8): 2137-2155, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29779050

RESUMO

It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants' perception of applied forces. With visual feedback, the PL participants could report the perturbation's direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies.


Assuntos
Braço/fisiopatologia , Aprendizagem/fisiologia , Movimento/fisiologia , Doenças do Sistema Nervoso Periférico/complicações , Propriocepção/fisiologia , Transtornos de Sensação/etiologia , Adaptação Fisiológica , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Visão Ocular , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA