Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Heliyon ; 9(9): e19621, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809917

RESUMO

Due to the scarcity of wild fruiting bodies, submerged fermentation of the medicinal fungus Antrodia camphorata is attracting much attention, but the production of bioactive triterpenoids is low. Therefore, there is an urgent need to improve the triterpenoid yield of submerged fermentation. Here, the A. camphorata mutant E3-64 was generated from strain AC16101 through random mutagenesis breeding, producing 172.8 mg triterpenoid per gram of dry mycelia. Further optimization of culture parameters resulted in a yield of 255.5 mg/g dry mycelia (i.e., an additional >1.4-fold increase), which is the highest reported yield thus far. Notably, mutant E3-64 produced 94% and 178% more of the triterpenoid components antcin A and antcamphin A, respectively, while it produced 52% and 15% less antcin B and G, respectively. Mutant E3-64 showed increased expression of key genes involved in triterpenoid biosynthesis, as well as different genome-wide single-nucleotide polymorphisms as compared with AC16101. Triterpenoids of the E3-64 mycelia exhibited remarkably protective activity against acute CCl4-induced liver injury in mice. This study shows the potential of A. camphorata for scientific research and commercial application.

2.
Front Plant Sci ; 14: 1219019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670861

RESUMO

Spatholobus suberectus Dunn (S. suberectus), a plant species within the Leguminosae family, has a long history of use in traditional medicines. The dried stem of S. suberectus exhibits various pharmacological activities because it contains various flavonoids. Diverse functions in plants are associated with the R2R3-MYB gene family, including the biosynthesis of flavonoids. Nonetheless, its role remains unelucidated in S. suberectus. Therefore, the newly sequenced S. suberectus genome was utilized to conduct a systematic genome-wide analysis of the R2R3-MYB gene family. The resulting data identified 181 R2R3-SsMYB genes in total, which were then categorized by phylogenetic analysis into 35 subgroups. Among the R2R3-SsMYB genes, 174 were mapped to 9 different chromosomes, and 7 genes were not located on any chromosome. Moreover, similarity in terms of exon-intron structures and motifs was exhibited by most genes in the same subgroup. The expansion of the gene family was primarily driven by segmental duplication events, as demonstrated by collinearity analysis. Notably, most of the duplicated genes underwent purifying selection, which was depicted through the Ka/Ks analysis. In this study, 22 R2R3-SsMYB genes were shown to strongly influence the level of flavonoids. The elevated expression level of these genes was depicted in the tissues with flavonoid accumulation in contrast with other tissues through qRT-PCR data. The resulting data elucidate the structural and functional elements of R2R3-SsMYB genes and present genes that could potentially be utilized for enhancing flavonoid biosynthesis in S. suberectus.

3.
Nat Prod Res ; : 1-7, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354439

RESUMO

Forsythia koreana Nakai is an ornamental plant widely cultivated in East Asia. The essential oil of F. koreana flowers (FEO) was extracted by hydrodistillation process and the volatile components were determined with gas chromatography coupled with mass spectrometry. The anti-inflammatory activity of FEO was investigated by using TPA-induced mouse ear inflammation model. The major components of FEO were identified as n-tetracosane (29.85%), n-heneicosane (17.45%), myristic acid (8.46%) and palmitaldehyde (6.22%). The TPA-induced mouse ear edema, water content, dermis thickness, epidermis thickness and nitric oxide production were decreased by FEO. Our findings suppose that the flower essential oil of F. koreana exerted anti-inflammatory activity, and may be used in the development of anti-inflammatory products in future.

4.
Chin J Nat Med ; 21(3): 185-196, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003641

RESUMO

Nasopharyngeal carcinoma (NPC) is the third most common malignancy with a high recurrence and metastasis rate in South China. Natural compounds extracted from traditional Chinese herbal medicines have been developed and utilized for the treatment of a variety of cancers with modest properties and slight side effects. Maackiain (MA) is a type of flavonoid that was first isolated from leguminous plants, and it has been reported to relieve various nervous system disorders and exert anti-allergic as well as anti-inflammatory effects. In this study, we demonstrated that MA inhibited proliferation, arrested cell cycle and induced apoptosis in nasopharyngeal carcinoma CNE1 and CNE2 cells in vitro and in vivo. The expression of the related proteins associated with these processes were consistent with the above effects. Moreover, transcriptome sequencing and subsequent Western blot experiments revealed that inhibition of the MAPK/Ras pathway may be responsible to the anti-tumor effect of MA on NPC cells. Therefore, the effects of MA and an activator of this pathway, tertiary butylhydroquinone (TBHQ), alone or combination, were investigated. The results showed TBHQ neutralized the inhibitory effects of MA. These data suggest that MA exerts its anti-tumor effect by inhibiting the MAPK/Ras signaling pathway and it has the potential to become a treatment for patients with NPC.


Assuntos
Apoptose , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia
5.
Plant Physiol Biochem ; 198: 107700, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37086691

RESUMO

γ-Aminobutyric acid (GABA) plays significant metabolic and signaling roles in plant stress responses. Recent studies have proposed that GABA alleviates plant nitrogen (N) deficient stress; however, the mechanism by which GABA mediates plant N deficiency adaptation remains not yet well understood. Herein we found in a medicinal plant Andrographis paniculata that 5 mmol L-1 exogenous GABA promoted plant growth under N deficient (1 mmol L-1 NO3-) condition, with remarkably increments in total N and NO3- concentrations in plants. GABA increased N assimilation and protein synthesis by up-regulating the activities and expression of N metabolic enzymes. GABA also increased the accumulation of α-ketoglutarate and malate, which could facilitate the assimilation of NO3-. Inhibition of NR by Na2WO4 counteracted the promoting effects of GABA on plant growth, and the effects of GABA were not affected by L-DABA and 3-MP, the inhibitors of GABA transaminase (GABA-T) and glutamate decarboxylase (GAD), respectively. These results suggested that the nutritional role of GABA was excluded in promoting plant growth under low N condition. The results of 15N isotopic tracing and NRTs transcription indicated that exogenous GABA could up-regulate NRT2.4 and NRT3.2 to increase plant NO3- uptake under N deficient condition. Interestingly, primidone, an inhibitor of GABA receptor, impeded the effects of GABA on plant growth and N accumulation. Thus, our results revealed that exogenous GABA acted as a signal to up-regulate NRTs via its receptor to increase NO3- uptake, and subsequently promoted NO3- assimilation to alleviate N deficiency in A. paniculata.


Assuntos
Nitratos , Plântula , Plântula/metabolismo , Nitratos/metabolismo , Andrographis paniculata , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Ácido gama-Aminobutírico/farmacologia
6.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985466

RESUMO

Jigucao capsules (JGCC) have the effects of soothing the liver and gallbladder and clearing heat and detoxification. It is a good medicine for treating acute and chronic hepatitis cholecystitis with damp heat of the liver and gallbladder. However, the existing quality standard of JGCC does not have content determination items, which is not conducive to quality control. In this study, serum pharmacochemistry technology and UNIFI data processing software were used to identify the blood prototype components and metabolites under the condition of the obvious drug effects of JGCC, and the referenced literature reports and the results from in vitro analysis of JGCC in the early stage revealed a total of 43 prototype blood components and 33 metabolites in JGCC. Quality markers (Q-markers) were discovered, such as abrine, trigonelline, hypaphorine and isoschaftoside. In addition, ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QQQ-MS) was used to determine the active ingredients in JGCC. The components of quantitative analysis have good correlation in the linear range with R2 ≥ 0.9993. The recovery rate is 93.15%~108.92% and the relative standard deviation (RSD) is less than 9.48%. The established UPLC-MS/MS quantitative analysis method has high sensitivity and accuracy, and can be used for the quality evaluation of JGCC.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Controle de Qualidade
7.
Plant Commun ; 4(4): 100591, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36926697

RESUMO

Gene duplication is assumed to be the major force driving the evolution of metabolite biosynthesis in plants. Freed from functional burdens, duplicated genes can mutate toward novelties until fixed due to selective fitness. However, the extent to which this mechanism has driven the diversification of metabolite biosynthesis remains to be tested. Here we performed comparative genomics analysis and functional characterization to evaluate the impact of gene duplication on the evolution of triterpenoid biosynthesis using Panax species as models. We found that whole-genome duplications (WGDs) occurred independently in Araliaceae and Apiaceae lineages. Comparative genomics revealed the evolutionary trajectories of triterpenoid biosynthesis in plants, which was mainly promoted by WGDs and tandem duplication. Lanosterol synthase (LAS) was likely derived from a tandem duplicate of cycloartenol synthase that predated the emergence of Nymphaeales. Under episodic diversifying selection, the LAS gene duplicates produced by γ whole-genome triplication have given rise to triterpene biosynthesis in core eudicots through neofunctionalization. Moreover, functional characterization revealed that oxidosqualene cyclases (OSCs) responsible for synthesizing dammarane-type triterpenes in Panax species were also capable of producing ocotillol-type triterpenes. Genomic and biochemical evidence suggested that Panax genes encoding the above OSCs originated from the specialization of one OSC gene duplicate produced from a recent WGD shared by Araliaceae (Pg-ß). Our results reveal the crucial role of gene duplication in diversification of triterpenoid biosynthesis in plants and provide insight into the origin of ocotillol-type triterpenes in Panax species.


Assuntos
Ginsenosídeos , Panax , Triterpenos , Panax/genética , Panax/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Genômica , Plantas/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 47(22): 5978-5990, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471923

RESUMO

Peptide is a compound consisting of 2-50 amino acids, which is intermediate between small molecule and protein. It is characterized by a variety of biological activities, easy absorption, strong specific targeting, and few side effects and has become one of the hotspots in biomedical research in recent years. Chinese medicine contains a large number of peptides. The traditional processing methods such as decocting and boiling can effectively boost peptides to exert their due biological activities. At present, however, the research on Chinese medicinal components in laboratory generally employs high-concentration alcohol extraction method, which may cause the peptides to be ignored in many natural Chinese medicines. Substantial studies have revealed that the peptides in Chinese medicine are important material basis responsible for the traditional efficacy. Based on years of research and literature retrieval, this study put forward the concept of "traditional Chinese medicine(TCM)-peptides", referring to the components consisting of two or more amino acids with molecular weight between small molecules and proteins that can express the efficacy of Chinese medicine. Furthermore, this study also summarized the extraction and separation of TCM-peptides, and structure determination methods and routes, predicted the research prospect of modern research methods of TCM-peptides based on "holistic view" and big data. The artificial intelligence prediction was combined with high-throughput screening technology to improve the discovery efficiency and accuracy of TCM-peptides, and holographic images between TCM-peptides and biological targets were established to provide references for the innovative drug design and related health product development of TCM-peptides based on TCM theories.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Inteligência Artificial , Medicamentos de Ervas Chinesas/química , Projetos de Pesquisa , Peptídeos , Proteínas , Aminoácidos
9.
Regen Biomater ; 9: rbac075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284748

RESUMO

The immune response induced by surface topography crucially determines the implant success. However, how the immune response is mediated by the size of surface topography remains unclear. Hence, various biocompatible Mg-Al layered double hydroxides sheet-array films with different sizes (nano, micro and nano/micro mixture) were constructed on the biomedical titanium, and their osteo-immunomodulation effects on the macrophages were explored. The nano-sheet array structures significantly promoted the polarization of M2 macrophages by activating the PI3K-AKT-mTOR signaling pathway with high gene expressions of integrin ß2 and FAK. While the micro-sheet array structures enhanced osteogenic differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs) via ROCK-YAP/TAZ-mediated mechanotransduction. Moreover, the nano-sheet array structures promoted the osteogenic differentiation of mBMSCs with a high proportion of M2 macrophages through a shared medium. This study gave further information concerning integrin-induced focal adhesions in cells of different sheet array structures and their role in macrophage polarization and osteogenic differentiation of mBMSCs, which might help to design biomaterial surfaces with optimal geometry for a desired immunemodulation.

10.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684485

RESUMO

The roots of Taraxacum kok-saghyz Rodin (TKS) are well-known and valued for their rubber-producing ability. Therefore, research on the analysis and detection of metabolites from the roots of TKS have been reported in previous studies. However, all of these studies have the shortcoming of focusing on only the rubber of TKS, without profiling the other metabolites in a systematic and comprehensive way. Here, the primary and secondary metabolites from the leaves of TKS were investigated using UPLC-ESI-MS/MS, and a total of 229 metabolites were characterized. Carboxylic acid derivatives, fatty acyls, phenols, and organooxygen compounds were found to be the major metabolites of TKS. The transcriptome data indicated that ribosomal, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, and linoleic acid metabolism genes were significantly differentially expressed. This study is the first to report the differences in the metabolic and transcriptome profiles of TKS leaves under exogenous ethephon spray, which improves our understanding of the main metabolites and their molecular mechanisms in TKS leaves.


Assuntos
Taraxacum , Compostos Organofosforados , Borracha , Espectrometria de Massas em Tandem , Taraxacum/genética , Transcriptoma
11.
Front Pharmacol ; 13: 854087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496313

RESUMO

Wutou decoction (WTD) is a traditional Chinese medicine prescription for the treatment of rheumatoid arthritis (RA), and this study systematically analyzed the metabolic mechanism and key pharmacodynamic components of WTD in RA rats by combining untargeted metabolomics and serum pharmacochemistry of traditional Chinese medicine to enrich the evidence of WTD quality markers (Q-markers) studies. WTD prevented synovial edema in RA rats and reduced tumor necrosis factor-alpha and interleukin 6 levels in rat serum, according to the results of an enzyme-linked immunosorbent examination and histopathological inspection. In model rats, pattern recognition and multivariate statistical analysis revealed 24 aberrant metabolites that disrupted linoleic acid metabolism, arachidonic acid metabolism, arginine and proline metabolism, etc. However, continued dosing of WTD for 28 days reversed 13 abnormal metabolites, which may be an important therapeutic mechanism from a metabolomic perspective. Importantly, 12 prototypical components and 16 metabolites from WTD were characterized in RA rat serum. The results of Pearson correlation analysis showed that aconitine, L-ephedrine, L-methylephedrine, quercetin, albiflorin, paeoniflorigenone, astragaline A, astragaloside II, glycyrrhetic acid, glycyrrhizic acid, licurazide, and isoliquiritigenin are the key pharmacological components that regulate the metabolism of RA rats, and they are identified as Q-markers. In sum, utilizing metabolomics and serum pharmacochemistry of traditional Chinese medicine, the metabolic mechanisms and Q-markers of WTD therapy in RA rats were revealed, providing a theoretical basis for the quality control investigation of WTD.

12.
Metabolites ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448474

RESUMO

This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular inflammation-related assays. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data served as potentially activity-related candidates. Of these candidates, 65 were tentatively or unambiguously annotated. 7-Hydroxy-5,3',4',5'-tetramethoxyflavone and three bioflavonoids, as well as three C32- and one C34-acetylated polyhydroxy fatty acid, were isolated from Lonicera hypoglauca leaves for the first time, and their structures were fully or partially elucidated. Of the potentially active candidate compounds, 15 were subsequently subjected to pharmacological testing. Their activities could be experimentally verified in part, emphasizing the relevance of Lonicera species as a source of anti-inflammatory active constituents. However, some compounds also impaired the cell viability. Overall, the approach was found useful to narrow down the number of potentially bioactive constituents in the complex extracts investigated. In the future, the application of more refined concepts, such as extract prefractionation combined with bio-chemometrics, may help to further enhance the reliability of candidate selection.

13.
Zhongguo Gu Shang ; 35(4): 349-52, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35485152

RESUMO

OBJECTIVE: To explore the effect of intermittent pneumatic compression(IPC) combined with 3M thermometer on the prevention of deep venous thrombosis(DVT) in patients with femoral intertrochanteric fracture. METHODS: From March 2016 to August 2019, 127 patients with femoral intertrochanteric fractures who underwent proximal femoral nail antirotation(PFNA) were retrospectively analyzed. They were divided into two groups according to different methods of thrombus prevention and treatment. Among them, 63 patients in group A did not use IPC and 3M thermometer;64 cases in group B were treated with IPC combined with 3M thermometer. Color Doppler ultrasound was used to dynamically monitor the DVT and changes of lower limbs during perioperative period. The venous thrombosis of lower limbs was monitored at 0, 24, 72 h and > 72 h after operation(recheck every 3 days until discharge). RESULTS: Occurrence of DVT of lower limbs after PFNA operation in two groups:there were 5 cases (7.8%) in group B and 20 cases (31.7%) in group A, there was significant difference between two groups (P=0.001). There was no significant difference in lower limb DVT between two groups at 0, 72 and > 72 h after operation(P>0.05), but the formation rate of group A was significantly higher than that of group B at 24 h after operation (P=0.049). There was no significant difference in DVT formation between group A and group B(P>0.05). However, the formation of DVT in group A was significantly higher than that in group B(P=0.012). CONCLUSION: Intraoperative IPC combined with 3M thermostat can effectively prevent DVT of lower limbs in patients undergoing PFNA surgery.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fraturas do Quadril , Trombose Venosa , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Fraturas do Quadril/cirurgia , Humanos , Extremidade Inferior/cirurgia , Estudos Retrospectivos , Trombose Venosa/prevenção & controle
14.
Sci Rep ; 12(1): 4906, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318399

RESUMO

The effects of exogenous sucrose (Suc) concentrations (0, 0.5, 1, 5, 10 mmol L-1) on carbon (C) and nitrogen (N) metabolisms were investigated in a medicinal plant Andrographis paniculata (Chuanxinlian). Suc application with the concentration of 0.5-5 mmol L-1 significantly promoted plant growth. In contrast, 10 mmol L-1 Suc retarded plant growth and increased contents of anthocyanin and MDA and activity of SOD in comparison to 0.5-5 mmol L-1 Suc. Suc application increased contents of leaf soluble sugar, reducing sugar and trerhalose, as well as isocitrate dehydrogenase (ICDH) activity, increasing supply of C-skeleton for N assimilation. However, total leaf N was peaked at 1 mmol L-1 Suc, which was consistent with root activity, suggesting that exogenous Suc enhanced root N uptake. At 10 mmol L-1 Suc, total leaf N and activities of glutamine synthase (GS), glutamate synthase (GOGAT), NADH-dependent glutamate dehydrogenase (NADH-GDH) and glutamic-pyruvic transaminase (GPT) were strongly reduced but NH4+ concentration was significantly increased. The results revealed that exogenous Suc is an effective stimulant for A. paniculata plant growth. Low Suc concentration (e.g. 1 mmol L-1) increased supply of C-skeleton and promoted N uptake and assimilation in A. paniculata plant, whereas high Suc concentration (e.g. 10 mmol L-1) uncoupled C and N metabolisms, reduced N metabolism and induced plant senescence.


Assuntos
Andrographis paniculata , Sacarose , NAD/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Sacarose/metabolismo
15.
Funct Integr Genomics ; 22(4): 467-479, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35318559

RESUMO

Mesona chinensis Benth (MCB) is an important medicinal and edible plant in Southern China and Southeast Asian countries. Chloroplast (cp) genome is usually used for plant phylogeny, species identification, and chloroplast genetic engineering. To characterize the cp genome and determine the evolutionary position and perform the genetic diversity analysis of MCB, we sequence and characterize the MCB cp genome. The results show that the cp genome of MCB is a single circular molecule with a length of 152,635 bp. It is a typical quadripartite structure, comprising a large single-copy region (LSC, 83,514 bp) and a small single-copy region (SSC, 17,751 bp) separated by two inverted repeat regions (IRs, 51,370 bp). It encodes 129 unique genes, including 84 protein-coding genes (PCGs), 37 transfer RNAs (tRNAs), and 8 ribosomal RNAs (rRNAs). Altogether 127 simple sequence repeats (SSRs) are identified in the MCB cp genome with 86.61% of mononucleotide repeats. Phylogenetic analysis reveals that MCB is most closely related to Ocimum basilicum based on the whole cp genomes. Several highly divergent regions are found, such as trnH_psbA, rps16_trnQ, trnS_trnG, trnE_trnT, psaA_ycf3, rpl32_trnL, ccsA_ndhD, ndhG_ndhI, and rps15_ycf1, which can be proposed for use as DNA barcode regions. Genetic diversity analysis unveils a relatively narrow genetic basis of MCB germplasm resources. Therefore, the innovative breeding of MCB is very urgent and necessary in future research.


Assuntos
Genoma de Cloroplastos , Lamiaceae , Código de Barras de DNA Taxonômico , Lamiaceae/genética , Filogenia , Melhoramento Vegetal
16.
Front Plant Sci ; 13: 809723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222473

RESUMO

Drought stress affects the normal growth and development of Mesona chinensis Benth (MCB), which is an important medicinal and edible plant in China. To investigate the physiological and molecular mechanisms of drought resistance in MCB, different concentrations of polyethylene glycol 6000 (PEG6000) (0, 5, 10, and 15%) were used to simulate drought conditions in this study. Results showed that the growth of MCB was significantly limited under drought stress conditions. Drought stress induced the increases in the contents of Chla, Chlb, Chla + b, soluble protein, soluble sugar, and soluble pectin and the activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Transcriptome analysis revealed 3,494 differentially expressed genes (DEGs) (1,961 up-regulated and 1,533 down-regulated) between the control and 15% PEG6000 treatments. These DEGs were identified to be involved in the 10 metabolic pathways, including "plant hormone signal transduction," "brassinosteroid biosynthesis," "plant-pathogen interaction," "MAPK signaling pathway-plant," "starch and sucrose metabolism," "pentose and glucuronate interconversions," "phenylpropanoid biosynthesis," "galactose metabolism," "monoterpenoid biosynthesis," and "ribosome." In addition, transcription factors (TFs) analysis showed 8 out of 204 TFs, TRINITY_DN3232_c0_g1 [ABA-responsive element (ABRE)-binding transcription factor1, AREB1], TRINITY_DN4161_c0_g1 (auxin response factor, ARF), TRINITY_DN3183_c0_g2 (abscisic acid-insensitive 5-like protein, ABI5), TRINITY_DN28414_c0_g2 (ethylene-responsive transcription factor ERF1b, ERF1b), TRINITY_DN9557_c0_g1 (phytochrome-interacting factor, PIF3), TRINITY_DN11435_c1_g1, TRINITY_DN2608_c0_g1, and TRINITY_DN6742_c0_g1, were closely related to the "plant hormone signal transduction" pathway. Taken together, it was inferred that these pathways and TFs might play important roles in response to drought stress in MCB. The current study provided important information for MCB drought resistance breeding in the future.

17.
PLoS One ; 17(2): e0264499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213661

RESUMO

Tokay Gecko (Gekko gecko) is a rare and endangered medicinal animal in China. Its dry body has been used as an anti-asthmatic agent for two thousand years. To date, the genome and transcriptome of this species remain poorly understood. Here, we adopted single molecule real-time (SMRT) sequencing to obtain full-length transcriptome data and characterized the transcriptome structure. We identified 882,273 circular consensus (CCS) reads, including 746,317 full-length nonchimeric (FLNC) reads. The transcript cluster analysis revealed 212,964 consensus sequences, including 203,994 high-quality isoforms. In total, 111,372 of 117,888 transcripts were successfully annotated against eight databases (Nr, eggNOG, Swiss-Prot, GO, COG, KOG, Pfam and KEGG). Furthermore, 23,877 alternative splicing events, 169,128 simple sequence repeats (SSRs), 10,437 lncRNAs and 7,932 transcription factors were predicted across all transcripts. To our knowledge, this report is the first to document the G. gecko transcriptome using SMRT sequencing. The full-length transcript data might accelerate transcriptome research and lay the foundation for further research on G. gecko.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lagartos/genética , Transcriptoma , Processamento Alternativo/genética , Animais , Genoma , Repetições de Microssatélites/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética
18.
J Sep Sci ; 45(3): 677-696, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34822724

RESUMO

Jigucao capsule is a well-known Chinese patent medicine for the treatment of acute and chronic hepatitis and cholecystitis. The chemical components of Jigucao capsule were not clear resulting from the paucity of relevant studies, which hindered the research of the pharmacological mechanism, the comprehensive development, and utilization of Jigucao capsule in clinical studies. By establishing a high-throughput ultra-performance liquid chromatography quadrupole time of flight mass spectrometry in combination with intelligent UNIFI software data processing platform to automatically characterize and identify the chemical profile of Jigucao capsule, 144 compounds were determined rapidly, including 34 terpenoids, 25 flavonoids, 22 steroids, 21 phenylpropanoids, 10 glycosides, six alkaloids, 13 organic acids, and other 13 components. These compounds may be the active components of Jigucao capsule. In this study, a rapid and robust method for comprehensively analyzing the chemical composition of Jigucao capsule was described and established for the first time. The results will provide a reference for the quality control of Jigucao capsule and the establishment of a higher quality standard, as well as for the pharmacodynamic material basis research.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Flavonoides/análise , Espectrometria de Massas/métodos
20.
Front Genet ; 13: 1056389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712846

RESUMO

Mesona chinensis Benth (MCB) (or Platostoma palustre or Platostoma chinense) is an important edible and medicinal plant in China. However, the mitochondrial genome (mitogenome, or mtDNA) of MCB has not been characterized or reported yet. In this study, we first sequenced and characterized the complete mitogenome of MCB. The MCB mitogenome was 494,599 bp in length and encoded 59 genes containing 37 protein-coding genes (PCGs), 19 tRNAs, and 3 rRNAs. Gene transfer analysis revealed that a total of 12 transfer segments with more than 93% identity (total length of 25,427 bp) were detected in the MCB mitogenome. Simple sequence repeats (SSR) analysis showed that 212 simple sequence repeats (SSR) were identified. Repeat sequence analysis revealed 305 repeat sequences (158 forward and 147 palindromic repeats) ranging from 30 bp to 48,383 bp and the 30-39 bp repeats were the majority type. Relative synonymous codon usage (RSCU) analysis uncovered that in total, 9,947 codons were encoding the protein-coding genes (PCGs). Serine (909, 9.1%) and leucine (879, 8.8%) were the two most abundant amino acids, while terminator (32, .3%) was the least abundant amino acid. Ka/Ks analysis indicated that almost all genes were subject to purification selection, except ccmB. Analysis of Lamiaceae mitogenomes constitution revealed that atpB and atpE were unique to the Rotheca serrata and Salvia miltiorrhiza mitogenomes. mttB gene loss was unique to the Boea hygrometrica mitogenome. The core fragments of the Lamiaceae mitogenomes harbored a higher GC content than the specific and variable fragments. In addition, phylogenetic analysis revealed that MCB was closely related to Salvia miltiorrhiza based on the mitogenomes. The current study provided valuable genomic resources for understanding and utilizing this important medicinal plant in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA