Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(45): 51373-51383, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326601

RESUMO

Wearable strain sensors can transfer human physical motions into digital features and connect the real world to the virtual world. However, there is still a huge challenge to prepare breathable strain sensors with good sensitivity, stretchability, softness, durability, and biocompatibility, simultaneously. Herein, we employ the soft silicone elastomer as a highly stretchable substrate and propose a new strain sensor based on the carbon nanotubes@porous soft silicone elastomer (CNTs@PSSE) by salt-template-assisted and dip-coating methods. The CNTs (conductive fillers) are firmly embedded in the PSSE. The obtained sensors exhibit excellent sensitivity up to 2845.1 and a large sensing strain range of 186%. Notably, the CNTs@PSSE sensors also possess strong robustness, which can resist ultrasonic deterioration and carry out more than 10,000 high-frequency stretch-relax cycles in the presence of an obvious notch caused by the scissor. Moreover, the excellent biocompatibility indicates that the sensors can be safely attached to human skin for precisely detecting full-range human motions and being configured on smart wireless gloves for synchronous control of the bionic hand robot.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Humanos , Elastômeros de Silicone , Porosidade , Condutividade Elétrica
2.
Nanomicro Lett ; 13(1): 123, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34138353

RESUMO

Flexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 µA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW cm-3 (or 2.48 mW g-1) under hand pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios.

3.
ACS Nano ; 14(11): 15517-15532, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33141556

RESUMO

Telemedicine provides an attractive vision for tele-monitoring human health conditions and, thus, offers the opportunity for timely preventing chronic disease. A key limitation of promoting telemedicine in clinic application is the lack of a noninvasive med-tech and effective monitoring platform, which should be wearable and capable of high-performance tele-monitoring of health risk. Here we proposed a volatolomics-based telemedicine for continuously and noninvasively assessing human health status through continuously tracking the variation of volatile markers derived from human breath or skin. Particularly, a nanosensor-based flexible electronic was specifically designed to serve as a powerful platform for implementing the proposed cost-effective healthcare. An all-flexible and highly packed makeup (all functional units were integrated in a 2*2*0.19 cm3 plate) enables an electronic, compact configuration and the capability of resisting negative impact derived from customers' daily movement. Notably, the nanosensor-based electronic demonstrates high specificity, quick response rate (t90% = 4.5 s), and desirable low detection limit (down to 0.117 ppm) in continuous tele-monitoring chronic-disease-related volatile marker (e.g., acetone). Assisted by the power saved light fidelity (Li-Fi) communicating technology, a clinic proof on the specifically designed electronic for noninvasively and uninterrupted assessing potential health risk (e.g., diabetics) is successfully implemented, with the accuracy of around 81%. A further increase in the accuracy of prewarning is predicted by excluding the impact of individual differences such as the gender, age, and smoking status of the customer. These promising pilot results indicate a bright future for the tailor-made nanosensing-device-supported volatolomics-based telemedicine in preventing chronic diseases and increasing patients' survival rate.


Assuntos
Telemedicina , Eletrônica , Humanos , Tecnologia
4.
ACS Appl Mater Interfaces ; 12(22): 25243-25252, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32391684

RESUMO

A chemiresistive gas sensor based on a three-dimensional Ag-modified reduced graphene oxide (3D Ag-rGO) aerogel is reported. We improve the graphene-based sensor performance by optimization of operating temperature, chemical modification, and new design of the material geometrical structure. The self-assembly and Ag nanoparticle (NP) decoration of the Ag-rGO aerogel are realized by a facile, one-step hydrothermal method. An integrated low-power microheater fabricated on a micromachined SiO2 membrane is employed to enhance the performance of the sensor with a fast response to NO2 and a shortened recovery time. The 3D Ag-rGO-based sensor at a temperature of 133 °C exhibits the highest response. At the same time, the response to other gases is suppressed while the response of the Ag-rGO sensor toward ammonia at 133 °C is reduced to half of the value at room temperature, demonstrating a greatly improved selectivity toward NO2. Additionally, the sensor exhibits a remarkably fast response to 50 ppb NO2 and a low limit of detection of 6.9 ppb.

5.
Small ; 16(9): e1903916, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31663295

RESUMO

Exosomes are secreted by most cell types and circulate in body fluids. Recent studies have revealed that exosomes play a significant role in intercellular communication and are closely associated with the pathogenesis of disease. Therefore, exosomes are considered promising biomarkers for disease diagnosis. However, exosomes are always mixed with other components of body fluids. Consequently, separation methods for exosomes that allow high-purity and high-throughput separation with a high recovery rate and detection techniques for exosomes that are rapid, highly sensitive, highly specific, and have a low detection limit are indispensable for diagnostic applications. For decades, many exosome separation and detection techniques have been developed to achieve the aforementioned goals. However, in most cases, these two techniques are performed separately, which increases operation complexity, time consumption, and cost. The emergence of microfluidics offers a promising way to integrate exosome separation and detection functions into a single chip. Herein, an overview of conventional and microfluidics-based techniques for exosome separation and detection is presented. Moreover, the advantages and drawbacks of these techniques are compared.


Assuntos
Técnicas e Procedimentos Diagnósticos , Exossomos , Microfluídica , Transporte Biológico , Biomarcadores/metabolismo , Técnicas e Procedimentos Diagnósticos/tendências , Exossomos/metabolismo
6.
Sensors (Basel) ; 19(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470572

RESUMO

Flexible, self-powered and miniaturized sensors are extensively used in the areas of sports, soft robotics, health care and communication devices. Measurement of vibration is important for determining the mechanical properties of a structure, specifically the string tension in strings. In this work, a flexible, lightweight and self-powered sensor is developed and attached to a string to measure vibrations characteristics in strings. Electrospun poly(vinylidene) fluoride (PVDF) nanofibers are deposited on a flexible liquid crystal polymer (LCP) substrate for the development of the sensor. The electrospinning process is optimized for different needle sizes (0.34-0.84 mm) and flow rates (0.6-3 mL/h). The characterization of the sensor is done in a cantilever configuration and the test results indicate the sensor's capability to measure the frequency and strain in the required range. The comparison of the results from the developed PVDF sensor and a commercial Laser Displacement Sensor (LDS) showed good resemblance (±0.2%) and a linear voltage profile (0.2 mV/µÎµ). The sensor, upon attachment to a racket string, is able to measure single impacts and sinusoidal vibrations. The repeatability of the results on the measurement of vibrations produced by an impact hammer and a mini shaker demonstrate an exciting new application for piezoelectric sensors.

7.
Sensors (Basel) ; 19(4)2019 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-30813503

RESUMO

This paper presents a new sensor based on a radial field bulk piezoelectric diaphragm to provide energy-efficient and high-performance situational sensing for autonomous underwater vehicles (AUVs). This sensor is self-powered, does not need an external power supply, and works efficiently in d33 mode by using inter-circulating electrodes to release the radial in-plane poling. Finite element analysis was conducted to estimate the sensor behavior. Sensor prototypes were fabricated by microfabrication technology. The dynamic behaviors of the piezoelectric diaphragm were examined by the impedance spectrum. By imitating the underwater disturbance and generating the oscillatory flow velocities with a vibrating sphere, the performance of the sensor in detecting the oscillatory flow was tested. Experimental results show that the sensitivity of the sensor is up to 1.16 mV/(mm/s), and the detectable oscillatory flow velocity is as low as 4 mm/s. Further, this sensor can work well under a disturbance with low frequency. The present work provides a good application prospect for the underwater sensing of AUVs.

8.
Biosens Bioelectron ; 129: 175-181, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710755

RESUMO

White blood cells (WBCs) isolated from peripheral blood have been verified as important biomarkers for the diagnosis, treatment and prognosis of cancer. However, it's still under challenge to acquire high-purity WBCs, even by taking advantage of current microfluidic technology. Considering the universality of clinical magnetic activated cell sorting (MACS) method, new developments on microfluidic chip in combination of magnetic cells separation technologies may provide a fascinating approach for high-purity WBCs sorting and widely clinical application. Here, we present a flyover style microfluidic chip which has been elaborately embedded with two-stage magnetic separation in continuous flow for WBCs sorting. Immunomagnetic micro/nano-particles (IMNPs) labeled WBC (WBC@IMNPs) were sequentially separated by a lateral magnetic force and a vertical magnetic force, and the final separation purity of WBCs reached up to 93 ±â€¯1.67% at a flow rate of 20 µL min-1. Furthermore, the WBCs viability was up to 97.5 ±â€¯1.8%. Consequently, this novel flyover style microfluidic-chip with magnetic separation technology has been successfully demonstrated as cut-in-edge method for high-purity WBCs sorting, and obviously it's easy to extend for other types of cells sorting under great potential application in biomedical fields.


Assuntos
Separação Imunomagnética/instrumentação , Dispositivos Lab-On-A-Chip , Leucócitos/citologia , Animais , Sobrevivência Celular , Desenho de Equipamento , Campos Magnéticos , Camundongos Endogâmicos BALB C , Níquel/química
9.
ACS Appl Mater Interfaces ; 11(9): 9405-9414, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30763515

RESUMO

Ionic hydrogels, a class of intrinsically stretchable and conductive materials, are widely used in soft electronics. However, the easy freezing and drying of water-based hydrogels significantly limit their long-term stability. Here, a facile solvent-replacement strategy is developed to fabricate ethylene glycol (Eg)/glycerol (Gl)-water binary antifreezing and antidrying organohydrogels for ultrastretchable and sensitive strain sensing within a wide temperature range. Because of the ready formation of strong hydrogen bonds between Eg/Gl and water molecules, the organohydrogels gain exceptional freezing and drying tolerance with retained deformability, conductivity, and self-healing ability even stay at extreme temperature for a long time. Thus, the fabricated strain sensor displays a gauge factor of 6, which is much higher than previously reported values for hydrogel-based strain sensors. Furthermore, the strain sensor exhibits a relatively wide strain range (0.5-950%) even at -18 °C. Various human motions with different strain levels are monitored by the strain sensor with good stability and repeatability from -18 to 25 °C. The organohydrogels maintained the strain sensing capability when exposed to ambient air for nine months. This work provides new insight into the fabrication of stable, ultrastretchable, and ultrasensitive strain sensors using chemically modified organohydrogel for emerging wearable electronics.


Assuntos
Antifúngicos/química , Hidrogéis/química , Movimento (Física) , Dispositivos Eletrônicos Vestíveis , Etilenoglicol/química , Glicerol/química , Humanos , Íons/química
10.
Electrophoresis ; 40(10): 1457-1477, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30676660

RESUMO

Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment-affinity-based and label-free methods-are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity-based methods is the strong specificity of CTCs isolation, the major advantage of the label-free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: "What makes dielectrophoresis a method of choice in CTCs isolation?" The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large-scale sorting and characterization of cells.


Assuntos
Separação Celular/métodos , Eletroforese/métodos , Células Neoplásicas Circulantes/patologia , Células Sanguíneas/citologia , Células Sanguíneas/patologia , Separação Celular/instrumentação , Sobrevivência Celular , Eletrodos , Eletroforese/instrumentação , Desenho de Equipamento , Humanos
11.
ACS Appl Mater Interfaces ; 11(2): 2364-2373, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30596426

RESUMO

Fabrication of stretchable chemical sensors becomes increasingly attractive for emerging wearable applications in environmental monitoring and health care. Here, for the first time, chemically derived ionic conductive polyacrylamide/carrageenan double-network (DN) hydrogels are exploited to fabricate ultrastretchable and transparent NO2 and NH3 sensors with high sensitivity (78.5 ppm-1) and low theoretical limit of detection (1.2 ppb) in NO2 detection. The hydrogels can withstand various rigorous mechanical deformations, including up to 1200% strain, large-range flexion, and twist. The drastic mechanical deformations do not degrade the gas-sensing performance. A facile solvent replacement strategy is devised to partially replace water with glycerol (Gly) molecules in the solvent of hydrogel, generating the water-Gly binary hydrogel with 1.68 times boosted sensitivity to NO2 and significantly enhanced stability. The DN-Gly NO2 sensor can maintain its sensitivity for as long as 9 months. The high sensitivity is attributed to the abundant oxygenated functional groups in the well-designed polymer chains and solvent. A gas-blocking mechanism is proposed to understand the positive resistance shift of the gas sensors. This work sheds light on utilizing ionic conductive hydrogels as novel channel materials to design highly deformable and sensitive gas sensors.


Assuntos
Amônia/análise , Hidrogéis/química , Dióxido de Nitrogênio/análise , Condutividade Elétrica
12.
ACS Appl Mater Interfaces ; 10(22): 19097-19105, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29798672

RESUMO

An ultrastretchable thermistor that combines intrinsic stretchability, thermal sensitivity, transparency, and self-healing capability is fabricated. It is found the polyacrylamide/carrageenan double network (DN) hydrogel is highly sensitive to temperature and therefore can be exploited as a novel channel material for a thermistor. This thermistor can be stretched from 0 to 330% strain with the sensitivity as high as 2.6%/°C at extreme 200% strain. Noticeably, the mechanical, electrical, and thermal sensing properties of the DN hydrogel can be self-healed, analogous to the self-healing capability of human skin. The large mechanical deformations, such as flexion and twist with large angles, do not affect the thermal sensitivity. Good flexibility enables the thermistor to be attached on nonplanar curvilinear surfaces for practical temperature detection. Remarkably, the thermal sensitivity can be improved by introducing mechanical strain, making the sensitivity programmable. This thermistor with tunable sensitivity is advantageous over traditional rigid thermistors that lack flexibility in adjusting their sensitivity. In addition to superior sensitivity and stretchability compared with traditional thermistors, this DN hydrogel-based thermistor provides additional advantages of good transparency and self-healing ability, enabling it to be potentially integrated in soft robots to grasp real world information for guiding their actions.

13.
Polymers (Basel) ; 10(7)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960619

RESUMO

This paper presents the development of a chemical sensor which was microfabricated on top of liquid crystal polymer (LCP) substrate. As a result of the unique material properties of LCP, the sensor showed favorable flexibility as well as operational reliability. These features demonstrate potential for integration of the sensor into automated sensing vehicles to achieve real-time detection. The sensor consists of a gold working electrode, a silver/silver chloride reference electrode, and a gold counter electrode. The working electrode of the sensor was further modified with bismuth nanoparticles and Nafion. The modified sensor exhibited a significantly enhanced sensing capability toward cadmium metal ion (Cd(II)) in comparison to the unmodified one. The effects of deposition potential and deposition time on the sensing performance of the sensor were extensively investigated through electrochemical experiments. With optimized parameters, the sensor was capable of quantifying Cd(II) in the concentration range of 0.3 to 25 µg/L. The minimum Cd(II) concentration detected by the sensor was 0.06 µg/L under quiescent deposition. The obtained results suggest that the proposed sensor has a great potential to be deployed for in-situ Cd(II) determination.

14.
Nanotechnology ; 29(1): 015202, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29083996

RESUMO

Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V µm-1 to achieve FE current density of 22 mA cm-2; whereas SiO2-wrapped field emitter requires 8.5 V µm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

15.
Nanotechnology ; 29(7): 075205, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29239308

RESUMO

It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 µm diameter and 2 µm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.

16.
Bioinspir Biomim ; 13(2): 025002, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29239859

RESUMO

Flow sensing, maneuverability, energy efficiency and vigilance of surroundings are the key factors that dictate the performance of marine animals. Be it swimming at high speeds, attack or escape maneuvers, sensing and survival hydrodynamics are a constant feature of life in the ocean. Fishes are capable of performing energy efficient maneuvers, including capturing energy from vortical structures in water. These impressive capabilities are made possible by the uncanny ability of fish to sense minute pressure and flow variations on their body. This is achieved by arrays of biological neuromast sensors on their bodies that 'feel' the surroundings through 'touch at a distance' sensing. The main focus of this paper is to review the various biomimetic material approaches in developing superficial neuromast inspired ultrasensitive MEMS sensors. Principals and methods that translate biomechanical filtering properties of canal neuromasts to benefit artificial MEMS sensors have also been discussed. MEMS sensors with ultrahigh flow sensitivity and accuracy have been developed mainly through inspiration from the hair cell and cupula structures in the neuromast. Canal-inspired packages have proven beneficial in hydrodynamic flow filtering in artificial sensors enabling signal amplification and noise attenuation. A special emphasis has been placed on the recent innovations that closely mimic the structural and material designs of stereocilia of neuromasts by exploring soft polymers.


Assuntos
Biomimética/instrumentação , Biomimética/métodos , Peixes/fisiologia , Nadadeiras de Animais , Animais , Organismos Aquáticos , Desenho de Equipamento , Peixes/anatomia & histologia , Hidrodinâmica , Ruído , Phoca/anatomia & histologia , Phoca/fisiologia
17.
Sensors (Basel) ; 17(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039765

RESUMO

Diffraction gratings are among the most commonly used optical elements in applications ranging from spectroscopy and metrology to lasers. Numerous methods have been adopted for the fabrication of gratings, including microelectromechanical system (MEMS) fabrication which is by now mature and presents opportunities for tunable gratings through inclusion of an actuation mechanism. We have designed, modeled, fabricated and tested a silicon based pitch tunable diffraction grating (PTG) with relatively large resolving power that could be deployed in a spaceborne imaging spectrometer, for example in a picosatellite. We have carried out a detailed analytical modeling of PTG, based on a mass spring system. The device has an effective fill factor of 52% and resolving power of 84. Tuning provided by electrostatic actuation results in a displacement of 2.7 µ m at 40 V . Further, we have carried out vibration testing of the fabricated structure to evaluate its feasibility for spaceborne instruments.

18.
J Opt Soc Am A Opt Image Sci Vis ; 34(9): 1711-1719, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036145

RESUMO

Integral field spectroscopy (IFS) is a well-established method for measuring spectral intensity data of the form s(x,y,λ), where x, y are spatial coordinates and λ is the wavelength. In most flavors of IFS, there is a trade-off between sampling (x,y) and the measured wavelength band Δλ. Here we present the first, to our knowledge, attempt to overcome this trade-off by use of computational imaging and measurement diversity. We implement diversity by including a grating in our design, which allows rotation of the dispersed spectra between measurements. The raw intensity data captured from the rotated grating positions are then processed by an inverse algorithm that utilizes sparsity in the data. We present simulated results from spatial-spectral data in the experimental dataset. We used non-overlapping portions of the dataset to train our sparsity priors in the form of the dictionary, and to test the reconstruction quality. We found that, depending on the level of noise in the measurement, diversity up to a maximum number of measurements is beneficial in terms of reducing error, and yields diminishing returns if even more measurements are taken.

19.
Sensors (Basel) ; 17(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788059

RESUMO

Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 µm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.


Assuntos
Biomimética , Ácido Hialurônico , Hidrogel de Polietilenoglicol-Dimetacrilato , Mecanorreceptores , Sistemas Microeletromecânicos
20.
Adv Sci (Weinh) ; 4(3): 1600319, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28331786

RESUMO

Reduced graphene oxide (RGO) has proved to be a promising candidate in high-performance gas sensing in ambient conditions. However, trace detection of different kinds of gases with simultaneously high sensitivity and selectivity is challenging. Here, a chemiresistor-type sensor based on 3D sulfonated RGO hydrogel (S-RGOH) is reported, which can detect a variety of important gases with high sensitivity, boosted selectivity, fast response, and good reversibility. The NaHSO3 functionalized RGOH displays remarkable 118.6 and 58.9 times higher responses to NO2 and NH3, respectively, compared with its unmodified RGOH counterpart. In addition, the S-RGOH sensor is highly responsive to volatile organic compounds. More importantly, the characteristic patterns on the linearly fitted response-temperature curves are employed to distinguish various gases for the first time. The temperature of the sensor is elevated rapidly by an imbedded microheater with little power consumption. The 3D S-RGOH is characterized and the sensing mechanisms are proposed. This work gains new insights into boosting the sensitivity of detecting various gases by combining chemical modification and 3D structural engineering of RGO, and improving the selectivity of gas sensing by employing temperature dependent response characteristics of RGO for different gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA