Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39299958

RESUMO

Diabetic retinopathy (DR) is a retinal disease caused by diabetes. If there is no intervention, it may even lead to blindness. Therefore, the detection of diabetic retinopathy is of great significance for preventing blindness in patients. Most of the existing DR detection methods use supervised methods, which usually require a large number of accurate pixel-level annotations. To solve this problem, we propose a self-supervised Equivariant Refinement Classification Network (ERCN) for DR classification. First, we use an unsupervised contrast pre-training network to learn a more generalized representation. Secondly, the class activation map (CAM) is refined by self-supervision learning. It first uses a spatial masking method to suppress low-confidence predictions, and then uses the feature similarity between pixels to encourage fine-grained activation to achieve more accurate positioning of the lesion. We propose a hybrid equivariant regularization loss to alleviate the degradation caused by the local minimum in the CAM refinement process. To further improve the classification accuracy, we propose an attention-based multi-instance learning (MIL), which weights each element of the feature map as an instance, which is more effective than the traditional patch-based instance extraction method. We evaluate our method on the EyePACS and DAVIS datasets and achieved 87.4% test accuracy in the EyePACS dataset and 88.7% test accuracy in the DAVIS dataset. It shows that the proposed method achieves better performance in DR detection compared with other state-of-the-art methods in self-supervised DR detection.

2.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38479022

RESUMO

Objective.Multi-contrast magnetic resonance imaging (MC MRI) can obtain more comprehensive anatomical information of the same scanning object but requires a longer acquisition time than single-contrast MRI. To accelerate MC MRI speed, recent studies only collect partial k-space data of one modality (target contrast) to reconstruct the remaining non-sampled measurements using a deep learning-based model with the assistance of another fully sampled modality (reference contrast). However, MC MRI reconstruction mainly performs the image domain reconstruction with conventional CNN-based structures by full supervision. It ignores the prior information from reference contrast images in other sparse domains and requires fully sampled target contrast data. In addition, because of the limited receptive field, conventional CNN-based networks are difficult to build a high-quality non-local dependency.Approach.In the paper, we propose an Image-Wavelet domain ConvNeXt-based network (IWNeXt) for self-supervised MC MRI reconstruction. Firstly, INeXt and WNeXt based on ConvNeXt reconstruct undersampled target contrast data in the image domain and refine the initial reconstructed result in the wavelet domain respectively. To generate more tissue details in the refinement stage, reference contrast wavelet sub-bands are used as additional supplementary information for wavelet domain reconstruction. Then we design a novel attention ConvNeXt block for feature extraction, which can capture the non-local information of the MC image. Finally, the cross-domain consistency loss is designed for self-supervised learning. Especially, the frequency domain consistency loss deduces the non-sampled data, while the image and wavelet domain consistency loss retain more high-frequency information in the final reconstruction.Main results.Numerous experiments are conducted on the HCP dataset and the M4Raw dataset with different sampling trajectories. Compared with DuDoRNet, our model improves by 1.651 dB in the peak signal-to-noise ratio.Significance.IWNeXt is a potential cross-domain method that can enhance the accuracy of MC MRI reconstruction and reduce reliance on fully sampled target contrast images.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Tempo , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
3.
Comput Biol Med ; 167: 107619, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37925909

RESUMO

Reconstruction methods based on deep learning have greatly shortened the data acquisition time of magnetic resonance imaging (MRI). However, these methods typically utilize massive fully sampled data for supervised training, restricting their application in certain clinical scenarios and posing challenges to the reconstruction effect when high-quality MR images are unavailable. Recently, self-supervised methods have been developed that only undersampled MRI images participate in the network training. Nevertheless, due to the lack of complete referable MR image data, self-supervised reconstruction is prone to produce incorrect structure contents, such as unnatural texture details and over-smoothed tissue sites. To solve this problem, we propose a self-supervised Deep Contrastive Siamese Network (DC-SiamNet) for fast MR imaging. First, DC-SiamNet performs the reconstruction with a Siamese unrolled structure and obtains visual representations in different iterative phases. Particularly, an attention-weighted average pooling module is employed at the bottleneck layer of the U-shape regularization unit, which can effectively aggregate valuable local information of the underlying feature map in the generated representation vector. Then, a novel hybrid loss function is designed to drive the self-supervised reconstruction and contrastive learning simultaneously by forcing the output consistency across different branches in the frequency domain, the image domain, and the latent space. The proposed method is extensively evaluated with different sampling patterns on the IXI brain dataset and the MRINet knee dataset. Experimental results show that DC-SiamNet can achieve 0.93 in structural similarity and 33.984 dB in peak signal-to-noise ratio on the IXI brain dataset under 8x acceleration. It has better reconstruction accuracy than other methods, and the performance is close to the corresponding model trained with full supervision, especially when the sampling rate is low. In addition, generalization experiments verify that our method has a strong cross-domain reconstruction ability for different contrast brain images.


Assuntos
Aceleração , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Articulação do Joelho , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador
4.
Front Aging Neurosci ; 14: 961661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034144

RESUMO

Cerebral small vessel disease (CSVD) represents a diverse cluster of cerebrovascular diseases primarily affecting small arteries, capillaries, arterioles and venules. The diagnosis of CSVD relies on the identification of small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, and microbleeds using neuroimaging. CSVD is observed in 25% of strokes worldwide and is the most common pathology of cognitive decline and dementia in the elderly. Still, due to the poor understanding of pathophysiology in CSVD, there is not an effective preventative or therapeutic approach for CSVD. The most widely accepted approach to CSVD treatment is to mitigate vascular risk factors and adopt a healthier lifestyle. Thus, a deeper understanding of pathogenesis may foster more specific therapies. Here, we review the underlying mechanisms of pathological characteristics in CSVD development, with a focus on endothelial dysfunction, blood-brain barrier impairment and white matter change. We also describe inflammation in CSVD, whose role in contributing to CSVD pathology is gaining interest. Finally, we update the current treatments and preventative measures of CSVD, as well as discuss potential targets and novel strategies for CSVD treatment.

5.
Neural Netw ; 119: 286-298, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499353

RESUMO

Deep Neural Networks (DNNs) have achieved extraordinary success in numerous areas. However, DNNs often carry a large number of weight parameters, leading to the challenge of heavy memory and computation costs. Overfitting is another challenge for DNNs when the training data are insufficient. These challenges severely hinder the application of DNNs in resource-constrained platforms. In fact, many network weights are redundant and can be removed from the network without much loss of performance. In this paper, we introduce a new non-convex integrated transformed ℓ1 regularizer to promote sparsity for DNNs, which removes redundant connections and unnecessary neurons simultaneously. Specifically, we apply the transformed ℓ1 regularizer to the matrix space of network weights and utilize it to remove redundant connections. Besides, group sparsity is integrated to remove unnecessary neurons. An efficient stochastic proximal gradient algorithm is presented to solve the new model. To the best of our knowledge, this is the first work to develop a non-convex regularizer in sparse optimization based method to simultaneously promote connection-level and neuron-level sparsity for DNNs. Experiments on public datasets demonstrate the effectiveness of the proposed method.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Neurônios , Algoritmos , Memória
6.
J Zhejiang Univ Sci B ; 6(5): 433-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15822160

RESUMO

Pseudomonas sp. ZD8 isolated from contaminated soil was immobilized with platane wood chips to produce packing materials for a novel biofilter system utilized to control restaurant emissions. The effects of operational parameters including retention time, temperature, and inlet gas concentration on the removal efficiency and elimination capacity were evaluated. Criteria necessary for a scale-up design of the biofilter was established. High and satisfactory level of rapeseed oil smoke removal efficiency was maintained during operation and the optimal retention time was found to be 18 s corresponding to smoke removal efficiency greater than 97%. The optimal inlet rapeseed oil smoke loading was 120 mg/(m(3) x h) at the upper end of the linear correlation between inlet loading and elimination capacity.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Filtração/métodos , Pseudomonas/metabolismo , Restaurantes , Gerenciamento de Resíduos/métodos , Biodegradação Ambiental , Células Imobilizadas , Filtração/instrumentação , Microscopia Eletrônica de Varredura , Óleos/metabolismo , Pseudomonas/ultraestrutura , Fumaça , Temperatura , Fatores de Tempo , Gerenciamento de Resíduos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA