Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Metabolism ; 160: 155980, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39053691

RESUMO

BACKGROUND: The effect of coronavirus disease 2019 (COVID-19) on adrenal endocrine metabolism in critically ill patients remains unclear. This study aimed to investigate the alterations in adrenal steroidogenic activity, elucidate underlying mechanisms, provide in situ histopathological evidence, and examine the clinical implications. METHODS: The comparative analyses of the adrenal cortices from 24 patients with fatal COVID-19 and 20 matched controls were performed, excluding patients previously treated with glucocorticoids. SARS-CoV-2 and its receptors were identified and pathological alterations were examined. Furthermore, histological examinations, immunohistochemical staining and ultrastructural analyses were performed to assess corticosteroid biosynthesis. The zona glomerulosa (ZG) and zona fasciculata (ZF) were then dissected for proteomic analyses. The biological processes that affected steroidogenesis were analyzed by integrating histological, proteomic, and clinical data. Finally, the immunoreactivity and responsive genes of mineralocorticoid and glucocorticoid receptors in essential tissues were quantitatively measured to evaluate corticosteroid responsiveness. FINDINGS: The demographic characteristics of COVID-19 patients were comparable with those of controls. SARS-CoV-2-like particles were identified in the adrenocortical cells of three patients; however, these particles did not affect cellular morphology or steroid synthesis compared with SARS-CoV-2-negative specimens. Although the adrenals exhibited focal necrosis, vacuolization, microthrombi, and inflammation, widespread degeneration was not evident. Notably, corticosteroid biosynthesis was significantly enhanced in both the ZG and ZF of COVID-19 patients. The increase in the inflammatory response and cellular differentiation in the adrenal cortices of patients with critical COVID-19 was positively correlated with heightened steroidogenic activity. Additionally, the appearance of more dual-ZG/ZF identity cells in COVID-19 adrenals was in accordance with the increased steroidogenic function. However, activated mineralocorticoid and glucocorticoid receptors and their responsive genes in vital tissues were markedly reduced in patients with critical COVID-19. INTERPRETATION: Critical COVID-19 was characterized by potentiated adrenal steroidogenesis, associated with increased inflammation, enhanced differentiation and elevated dual-ZG/ZF identity cells, alongside suppressed corticosteroid responsiveness. These alterations implied the reduced effectiveness of conventional corticosteroid therapy and underscored the need for evaluation of the adrenal axis and corticosteroid sensitivity.


Assuntos
Corticosteroides , COVID-19 , Estado Terminal , Humanos , COVID-19/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Corticosteroides/uso terapêutico , Corticosteroides/biossíntese , Idoso , SARS-CoV-2 , Zona Fasciculada/metabolismo , Zona Fasciculada/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Adulto , Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/patologia , Zona Glomerulosa/metabolismo , Zona Glomerulosa/efeitos dos fármacos , Zona Glomerulosa/patologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/efeitos dos fármacos
2.
Cancer Cell ; 42(5): 815-832.e12, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38640932

RESUMO

Monocyte-derived tumor-associated macrophages (Mo-TAMs) intensively infiltrate diffuse gliomas with remarkable heterogeneity. Using single-cell transcriptomics, we chart a spatially resolved transcriptional landscape of Mo-TAMs across 51 patients with isocitrate dehydrogenase (IDH)-wild-type glioblastomas or IDH-mutant gliomas. We characterize a Mo-TAM subset that is localized to the peri-necrotic niche and skewed by hypoxic niche cues to acquire a hypoxia response signature. Hypoxia-TAM destabilizes endothelial adherens junctions by activating adrenomedullin paracrine signaling, thereby stimulating a hyperpermeable neovasculature that hampers drug delivery in glioblastoma xenografts. Accordingly, genetic ablation or pharmacological blockade of adrenomedullin produced by Hypoxia-TAM restores vascular integrity, improves intratumoral concentration of the anti-tumor agent dabrafenib, and achieves combinatorial therapeutic benefits. Increased proportion of Hypoxia-TAM or adrenomedullin expression is predictive of tumor vessel hyperpermeability and a worse prognosis of glioblastoma. Our findings highlight Mo-TAM diversity and spatial niche-steered Mo-TAM reprogramming in diffuse gliomas and indicate potential therapeutics targeting Hypoxia-TAM to normalize tumor vasculature.


Assuntos
Adrenomedulina , Neoplasias Encefálicas , Glioblastoma , Macrófagos Associados a Tumor , Humanos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Animais , Adrenomedulina/genética , Adrenomedulina/metabolismo , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Neovascularização Patológica/genética , Microambiente Tumoral , Isocitrato Desidrogenase/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Macrófagos/metabolismo , Hipóxia Celular
3.
Neurotrauma Rep ; 5(1): 16-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249324

RESUMO

The great majority of spinal cord injury (SCI) patients have debilitating chronic pain. Despite decades of research, these pain pathways of neuropathic pain (NP) are unknown. SCI patients have been shown to have abnormal brain pain pathways. We hypothesize that SCI NP patients' pain matrix is altered compared to SCI patients without NP. This study examines the functional connectivity (FC) in SCI patients with moderate-severe chronic NP compared to SCI patients with mild-no NP. These groups were compared to control subjects. The Neuropathic Pain Questionnaire and neurological evaluation based on the International Standard Neurological Classification of SCI were utilized to define the severity and level of injury. Of the 10 SCI patients, 7 (48.6 ± 17.02 years old, 6 male and 1 female) indicated that they had NP and 3 did not have NP (39.33 ± 8.08 years old, 2 male and 1 female). Ten uninjured neurologically intact participants were used as controls (24.8 ± 4.61 years old, 5 male and 5 female). FC metrics were obtained from the comparisons of resting-state functional magnetic resonance imaging among our various groups (controls, SCI with NP, and SCI without NP). For each comparison, a region-of-interest (ROI)-to-ROI connectivity analysis was pursued, encompassing a total of 175 ROIs based on a customized atlas derived from the AAL3 atlas. The analysis accounted for covariates such as age and sex. To correct for multiple comparisons, a strict Bonferroni correction was applied with a significance level of p < 0.05/NROIs. When comparing SCI patients with moderate-to-severe pain to those with mild-to-no pain, specific thalamic nuclei had altered connections. These nuclei included: medial pulvinar; lateral pulvinar; medial geniculate nucleus; lateral geniculate nucleus; and mediodorsal magnocellular nucleus. There was increased FC between the lateral geniculate nucleus and the anteroventral nucleus in NP post-SCI. Our analysis additionally highlights the relationships between the frontal lobe and temporal lobe with pain. This study successfully identifies thalamic neuroplastic changes that occur in patients with SCI who develop NP. It additionally underscores the pain matrix and involvement of the frontal and temporal lobes as well. Our findings complement that the development of NP post-SCI involves cognitive, emotional, and behavioral influences.

4.
J Pathol ; 262(4): 427-440, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38229567

RESUMO

Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Cerebelares , Anemia de Fanconi , Ferroptose , Meduloblastoma , Camundongos , Animais , Humanos , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ferroptose/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Linhagem Celular Tumoral , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética
5.
N Am Spine Soc J ; 16: 100282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37915965

RESUMO

Atypical spinal infections (ASIs) of the spine are a challenging pathology to management with potentially devastating morbidity and mortality. To identify patients with atypical spinal infections, it is important to recognize the often insidious clinical and radiographic presentations, in the setting of indolent and smoldering organism growth. Trending of inflammatory markers, and culturing of organisms, is essential. Once identified, the spinal infection should be treated with antibiotics and possibly various surgical interventions including decompression and possible fusion depending on spine structural integrity and stability. Early diagnosis of ASIs and immediate treatment of debilitating conditions, such as epidural abscess, correlate with fewer neurological deficits and a shorter duration of medical treatment. There have been great advances in surgical interventions and spinal fusion techniques for patients with spinal infection. Overall, ASIs remain a perplexing pathology that could be successfully treated with early diagnosis and immediate, appropriate medical, and surgical management.

6.
Stem Cell Res Ther ; 14(1): 334, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981679

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation potential and possess the functions of immunomodulation, regulation of cell growth, and repair of damage. Over recent years, MSCs have been found to regulate the secretion of inflammatory factors and to exert regulatory effects on various lymphocytes in inflammatory states, and on the subsequent repair of tissue damage caused by inflammation. In the present study, we analyzed the effects of tissue inflammation on the characteristics of MSCs. METHODS: Human fat derived from the infrapatellar fat pad (IPFP) of knees with differing degrees of inflammation was extracted from specimens derived from total knee arthroplasties. HE and immunohistochemical staining was performed to directly observe the evidence and degree of inflammation in human infrapatellar fat pad tissue in order to classify MSCs cells, by their origin, into highly inflamed and lowly inflamed groups, and to study the effect of tissue inflammation on cell acquisition rates via cellular counting data. Flow cytometry assays were performed to investigate the effect of tissue inflammation on MSC surface marker expression. Trilineage differentiation, including osteogenesis, adipogenesis, and chondrogenesis, was performed to assess the effect of tissue inflammation on the ability of MSCs to undergo directed differentiation. The effect of tissue inflammation on the ability of MSCs to proliferate was investigated via clone formation studies. RNA-sequencing was performed to evaluate the transcriptomes of MSCs derived from different areas of inflammation. The effect of tissue inflammation on tissue repair capacity and safety of MSCs was investigated via a murine model of acute liver injury. RESULTS: The results of cell count data indicate that a high degree of tissue inflammation significantly decreases the acquisition rate of MSCs, and the proportion of CD34+ and CD146+ cells. The results of our trilineage differentiation assay show that a higher degree of inflammation decreases osteogenic differentiation and enhances adipogenic and chondrogenic differentiation of MSCs. However, these differences were not statistically significant. Clone formation assays indicate that the degree of tissue inflammation at the MSC source does not significantly affect the proliferative capacity of MSCs. The transcriptomes of MSCs remain relatively stable in fat pad tissues derived from both highly and lowly inflamed samples. The results of acute liver injury investigations in mice indicate that MSCs of high and low inflammatory tissue origin have no significant difference in their tissue repair capability. CONCLUSIONS: High tissue inflammation at the source of MSCs reduces the acquisition rate of MSCs and the percentage of CD34+ and CD146+ cells acquisition. However, source tissue inflammation may not significantly affect trilineage differentiation potential and proliferative capacity of MSCs. Also, MSCs obtained from differing source degrees of inflammation retain stable and similar transcriptomic profile and are both safe and efficacious for tissue repair/regeneration without detectable differences.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Adulto , Humanos , Animais , Camundongos , Osteogênese/fisiologia , Antígeno CD146/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Tecido Adiposo , Inflamação/metabolismo , Fígado , Condrogênese , Células Cultivadas
7.
Sci Rep ; 13(1): 21014, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030651

RESUMO

General anesthesia (GA) during surgery is commonly maintained by inhalational sevoflurane. Previous resting state functional MRI (rs-fMRI) studies have demonstrated suppressed functional connectivity (FC) of the entire brain networks, especially the default mode networks, transitioning from the awake to GA condition. However, accuracy and reliability were limited by previous administration methods (e.g. face mask) and short rs-fMRI scans. Therefore, in this study, a clinical scenario of epilepsy patients undergoing laser interstitial thermal therapy was leveraged to acquire 15 min of rs-fMRI while under general endotracheal anesthesia to maximize the accuracy of sevoflurane level. Nine recruited patients had fMRI acquired during awake and under GA, of which seven were included in both static and dynamic FC analyses. Group independent component analysis and a sliding-window method followed by k-means clustering were applied to identify four dynamic brain states, which characterized subtypes of FC patterns. Our results showed that a low-FC brain state was characteristic of the GA condition as a single featuring state during the entire rs-fMRI session; In contrast, the awake condition exhibited frequent fluctuations between three distinct brain states, one of which was a highly synchronized brain state not seen in GA. In conclusion, our study revealed remarkable dynamic connectivity changes from awake to GA condition and demonstrated the advantages of dynamic FC analysis for future studies in the assessments of the effects of GA on brain functional activities.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Sevoflurano/farmacologia , Reprodutibilidade dos Testes , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Anestesia Geral/efeitos adversos
8.
Front Neuroimaging ; 2: 1201682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025313

RESUMO

Introduction: It is now understood that in focal epilepsy, impacted neural regions are not limited to the epileptogenic zone. As such, further investigation into the underlying functional connectivity (FC) patterns in those enduring Temporal Lobe Epilepsy (TLE) with Mesial Temporal Sclerosis (MTS) is imperative to understanding the intricacies of the disease. Methods: The rsfMRIs of 17 healthy participants, 10 left-sided TLE-MTS patients with a pre-operative history of focal impaired awareness seizures (FIA), and 13 left-sided TLE-MTS patients with a pre-operative history of focal aware seizures (FA) were compared to determine the existence of distinct FC patterns with respect to seizure types. Similarly, the rsfMRIs of the above-mentioned healthy participants, 16 left-sided TLE-MTS individuals who were seizure-free (SF) 12 months postoperatively, and 16 left-sided TLE-MTS persons without seizure freedom (nSF) were interrogated. The ROI-to-ROI connectivity analysis included a total of 175 regions of interest (ROIs) and accounted for both age and duration of epileptic activity. Significant correlations were determined via two-sample t-tests and Bonferroni correction (α = 0.05). Results: Comparisons of FA and FIA groups depicted significant correlations between the contralateral anterior cingulate gyrus, subgenual region, and the contralateral cerebellum, lobule III (p-value = 2.26e-4, mean z-score = -0.05 ± 0.28, T = -4.23). Comparisons of SF with nSF depicted two significantly paired-ROIs; the contralateral amygdala and the contralateral precuneus (p-value = 2.9e-5, mean z-score = -0.12 ± 0.19, T = 4.98), as well as the contralateral locus coeruleus and the ipsilateral intralaminar nucleus (p-value= 1.37e-4, mean z-score = 0.06 ± 0.17, T = -4.41). Significance: FC analysis proves to be a lucrative modality for exploring unique signatures with respect to seizure types and postoperative outcomes. By furthering our understanding of the differences between epileptic phenotypes, we can achieve improvement in future treatment modalities not limited to targeting advancements.

9.
J Emerg Trauma Shock ; 16(3): 102-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025508

RESUMO

Introduction: The link between methamphetamine (METH) use and mortality or morbidity, particularly perioperative complications, associated with trauma surgery are not well characterized. This study aims to address this by performing a comparison of surgical outcomes between METH-negative (METH-) and METH-positive (METH+) trauma patients. Methods: An Institutional Review Board-approved retrospective chart review was performed on all trauma patients admitted to our Level 1 trauma center who underwent surgical operations between 2015 and 2020. Patients were categorized into METH- and METH+ groups. Patient characteristics such as age, sex, race, Injury Severity Score (ISS), presence of peri-operative complications, and mortality, amongst others, were used to perform univariate comparisons. Additional multi-variate comparisons were performed across both the whole cohort and with age, sex, and ISS-matched groups. Results: Of 571 patients who met the final inclusion criteria, 421 were METH- and 150 METH+. The METH+ group also possessed a lower median ISS (P = 0.0478) and did not possess significantly different mortality or morbidity than their METH- counterparts in univariate analysis. Multivariate analysis in whole-group and matched-group cohorts indicated that METH was not a positive predictor of mortality or morbidity. Instead, ISS predicted mortality (P = 0.048) and morbidity (P < 0.001). Conclusion: Our results suggest that METH use does not exert a positive effect on mortality or morbidity in the acute trauma surgery setting and that ISS may be a more significant contributor, suggesting severity, and etiology of injury are also important considerations for trauma surgery evaluation.

10.
Spinal Cord Ser Cases ; 9(1): 41, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573432

RESUMO

INTRODUCTION: Delayed C5 weakness is a known entity in cervical spine surgery, although with varied clinical presentation and poorly understood mechanism of action. We describe the first case in the literature of a bilateral C5 palsy leading to bilateral phrenic nerve dysfunction following a posterior cervical decompression and fusion. CASE REPORT: A 76-year-old male presented with low back pain and was diagnosed as myelopathic. On initial neurological examination, he could not ambulate without assistance and was unsteady on tandem gait. The initial cervical MRI and CT scan showed advanced multilevel degenerative changes of the cervical spine with severe cord compression and myelomalacia. The patient underwent C3-C6 posterior cervical decompression & fusion (PCDF). He awoke with his baseline examination without neurophysiological monitoring changes intraoperatively or C5 root EMG activity. Post-operative MRI of the cervical spine was performed and showed an excellent decompression. The patient was neurologically stable and discharged to a rehabilitation facility. Patient developed a delayed bilateral C5P on postoperative day (POD) 74. Delayed bilateral C5P and phrenic nerve damage was determined to cause this patient's dyspnea. PM&R consult recommended placement of diaphragmatic pacers. However, clinically his respiratory function, as well as motor deficits, have gradually improved. CONCLUSION: Bilateral diaphragmatic paralysis, a severe complication of cervical spine surgery, may cause respiratory distress and upper limb weakness. C5P, the underlying cause, may arise from various factors. Early detection and management of diaphragmatic weakness with physical therapy and pacers are crucial, emphasizing the need for vigilance by healthcare professionals and surgeons.


Assuntos
Descompressão Cirúrgica , Fusão Vertebral , Masculino , Humanos , Idoso , Descompressão Cirúrgica/efeitos adversos , Nervo Frênico , Fusão Vertebral/efeitos adversos , Paralisia/etiologia , Paralisia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA