RESUMO
MAX phase is a family of ceramic compounds, typically known for their metallic properties. However, we show here that some of them may be narrow bandgap semiconductors. Using a series of first-principles calculations, we have investigated the electronic structures of 861 dynamically stable MAX phases. Notably, Sc2SC, Y2SC, Y2SeC, Sc3AuC2, and Y3AuC2 have been identified as semiconductors with band gaps ranging from 0.2 to 0.5 eV. Furthermore, we have assessed the thermodynamic stability of these systems by generating ternary phase diagrams utilizing evolutionary algorithm techniques. Their dynamic stabilities are confirmed by phonon calculations. Additionally, we have explored the potential thermoelectric efficiencies of these materials by combining Boltzmann transport theory with first-principles calculations. The relaxation times are estimated using scattering theory. The zT coefficients for the aforementioned systems fall within the range of 0.5 to 2.5 at temperatures spanning from 300 to 700 K, indicating their suitability for high-temperature thermoelectric applications.
RESUMO
Over the past decade, conventional MAX phases and MXenes have garnered significant interest, primarily limited to carbides and/or nitrides. However, in 2019, the hexagonal ternary boride Ti2InB2 was successfully synthesized, sparking extensive research into hexagonal MAB (h-MAB) phases and their derived MBenes (h-MBenes). In recent years, h-MAB and h-MBenes have become focal points in the fields of physics, chemistry, and materials science. The unique properties and promising performances of h-MBenes in catalysis, energy storage, spintronics, and electrical devices underscore their considerable potential. Nonetheless, the exploration of h-MAB and h-MBenes is still in its nascent stages, with many anticipated properties and potentials yet to be fully explored. This article introduces the general concepts, crystal structure, and exfoliation properties of h-MAB phases, while also highlighting advancements in the synthesis and applications of h-MBenes. Finally, we discuss future challenges and prospects for the study of h-MAB and h-MBenes.
RESUMO
Recently, a new class of two-dimensional (2D) hexagonal transition-metal borides (h-MBenes) was discovered through a combination of ab initio predictions and experimental studies. These h-MBenes are derived from ternary hexagonal MAB (h-MAB) phases and have demonstrated promising potential for practical applications. In this study, we conducted first-principles calculations on 15 h-MBenes and identified four antiferromagnetic metals and 11 electrocatalysts for the hydrogen evolution reaction (HER). Notably, the h-MnB material exhibited a remarkable Néel temperature of 340 K and a high magnetic anisotropy energy of 154 µeV/atom. Additionally, the hydrogen adsorption Gibbs free energies (ΔGH*) for h-ZrBO, h-MoBO, and h-Nb2BO2 are close to the ideal value of 0 eV, indicating their potential as electrochemical catalysts for HER. Further investigations revealed that the electronic structure, Néel temperature, and HER activity of the studied h-MBenes can be tuned by applying biaxial strains. These findings suggest that h-MBenes have wide-ranging applicability in areas such as antiferromagnetic spintronics, flexible electronic devices, and electrocatalysis, thereby expanding the potential applications of 2D transition-metal borides.
RESUMO
This study combines machine learning (ML) and high-throughput calculations to uncover new ternary electrides in the A2BC2 family of compounds with the P4/mbm space group. Starting from a library of 214 known A2BC2 phases, density functional theory calculations were used to compute the maximum value of the electron localization function, indicating that 42 are potential electrides. A model was then trained on this data set and used to predict the electride behavior of 14,437 hypothetical compounds generated by structural prototyping. Then, the stability and electride features of the 1254 electride candidates predicted by the model were carefully checked by high-throughput calculations. Through this tiered approach, 41 stable and 104 metastable new A2BC2 electrides were predicted. Interestingly, all three kinds of electrides, i.e., electron-deficient, electron-neutral, and electron-rich electrides, are present in the set of predicted compounds. Three of the most promising new electrides (two electron-rich, Nd2ScSi2 and La2YbGe2, and one electron-deficient Y2LiSi2) were then successfully synthesized and characterized experimentally. Furthermore, the synthesized electrides were found to exhibit high catalytic activities for NH3 synthesis under mild conditions when Ru-loaded. The electron-deficient Y2LiSi2, in particular, was seen to exhibit a good balance of catalytic activity and chemical stability, suggesting its future application in catalysis.
RESUMO
The practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of In from h-MAB Hf2 InB2 . The synthesized 2D HfBO delivered a specific capacity of 420â mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.
RESUMO
Hexagonal MAB (h-MAB) phases and their two-dimensional (2-D) derivatives (h-MBenes) have emerged as promising materials since the discovery of Ti2InB2. Herein, we identified that a possible h-MBene, 2-D Hf2BO2, can be an excellent platform for the electrocatalysis of hydrogen evolution reaction (HER) by density functional theory calculations. We proposed two approaches of transition metal (TM) modifications by atom deposition and implanting to optimize the HER performance of 2-D Hf2BO2. It is revealed that a moderate charge reduction of surface O, which is induced by the introduction of TM atoms, is conductive to a higher catalytic performance. The synergistic effect between implanted TM atoms and Hf2BO2 matrix can efficiently activate the surface by broadening O-p orbitals and shifting up p-band center, especially for V, Cr, and Mo as dopants, which can reduce the Gibbs free energy (ΔGH*) from 0.939 to -0.04, 0.05 and -0.04 eV, respectively. Interestingly, this effect works within a local region and the activity can also be evaluated by bond length of Hf-O, in addition to ΔGH*. This work suggests that due to its excellent electrocatalysis properties, h-MBenes can open up a new area for 2-D materials and will stimulate researchers to explore the synthesis of h-MAB phases and the stripping of h-MBenes.
RESUMO
The newly discovered hexagonal MAB (h-MAB) phases have shown great promise in synthesizing 2-D borides, but wide application is hindered by the limited kinds of transition metals that can be involved. In this work, an extensive structure search was performed to identify stable quaternary h-MAB phases by alloying ternary h-MAB phases with a fourth component. The predicted 22 stable quaternary h-MAB phases reveal that there is plenty of room for further exploration of new materials by element alloying. Moreover, we theoretically proved the possibility of exfoliating h-MBenes from the predicted quaternary phases through the selective removal of A components. The simulations for the hydrogen evolution reaction (HER) revealed that the bi-metal combination demonstrates a great advantage to enrich the application perspectives of h-MBenes. The discovery of quaternary h-MAB phases and two-dimensional derivatives offers new insights and understanding of boride-based materials.
RESUMO
Correction for 'Discovery of intrinsic two-dimensional antiferromagnets from transition-metal borides' by Shiyao Wang et al., Nanoscale, 2021, 13, 8254-8263, DOI: 10.1039/D1NR01103K.
RESUMO
Intrinsic two-dimensional (2D) magnets are promising materials for developing advanced spintronic devices. A few have already been synthesized from the exfoliation of van der Waals magnetic materials. In this work, by using ab initio calculations and Monte Carlo simulation, a series of 2D MBs (M = Cr, Mn or Fe; B = boron) are predicted possessing robust magnetism, sizeable magnetic anisotropy energy, and excellent structural stability. These 2D MBs can be respectively synthesized from non-van der Waals compounds with low separation energies such as Cr2AlB2, Mn2AlB2, and Fe2AlB2. 2D CrB is a ferromagnetic (FM) metal with a weak in-plane magnetic anisotropy energy of 23.6 µeV per atom. Metallic 2D MnB and FeB are Ising antiferromagnets with an out-of-plane magnetic easy axis and robust magnetic anisotropy energies up to 222.7 and 482.2 µeV per atom, respectively. By using Monte Carlo simulation, the critical temperatures of 2D CrB, MnB, and FeB were calculated to be 440 K, 300 K, and 320 K, respectively. Our study found that the super-exchange interaction plays the dominant role in determining the long-range magnetic ordering of 2D MBs. Moreover, most functionalized 2D MBTs (T = O, OH or F) are predicted to have AFM ground states. Alternating transition metals or functional groups can significantly modulate the magnetic ground state and critical temperature of 2D MBTs. This study suggests that the 2D MBs and MBTs are promising metallic 2D magnets for spintronic applications.
RESUMO
A family of two-dimensional (2D) transition metal borides, referred to as MBenes, is recently emerging as novel materials with great potentials in electronic and energy harvesting applications to the field of materials science and technology. Transition metal borides can be synthesized from chemical exfoliation of ternary-layered transition metal borides, known as MAB phases. Previously it has been predicted that thin pristine 2D Sc-, Ti-, Zr-, Hf-, V-, Nb-, Ta-, Mo-, and W-based transition metal borides with hexagonal phase are more stable than their corresponding orthorhombic phase. Here, using a set of first-principles calculations (at absolute zero temperature), we have examined the geometric, dynamic stability, electronic structures, work function, bond strength, and mechanical properties of the hexagonal monolayer of transition metal borides (M= Sc, Ti, Zr, Hf, V, Nb, Ta, Mo, and W) chemically terminated with F, O, and OH. The results of the formation energies of terminated structures imply that the surface terminations could make a strong bond to the surface transition metals and provide the possibility of the development of transition metal borides with those surface terminations. Except for ScBO, which is an indirect bandgap semiconductor, the other transition metal borides are metallic or semimetal. Particularly, TiBF, ZrBF, and HfBF are metallic systems whose band dispersions close to the Fermi level indicate the coexistence of type-I and type-II nodal lines. Our calculated work functions indicate that 2D transition metal borides with OH (O) functionalization obtain the lowest (highest) work functions. The results of the mechanical properties of the considered structures imply that oxygen functionalized transition metal borides exhibit the stiffest mechanical strength with 248
RESUMO
Mn+1AXn phases are a large family of compounds that have been limited, so far, to carbides and nitrides. Here we report the prediction of a compound, Ti2InB2, a stable boron-based ternary phase in the Ti-In-B system, using a computational structure search strategy. This predicted Ti2InB2 compound is successfully synthesized using a solid-state reaction route and its space group is confirmed as P[Formula: see text]m2 (No. 187), which is in fact a hexagonal subgroup of P63/mmc (No. 194), the symmetry group of conventional Mn+1AXn phases. Moreover, a strategy for the synthesis of MXenes from Mn+1AXn phases is applied, and a layered boride, TiB, is obtained by the removal of the indium layer through dealloying of the parent Ti2InB2 at high temperature under a high vacuum. We theoretically demonstrate that the TiB single layer exhibits superior potential as an anode material for Li/Na ion batteries than conventional carbide MXenes such as Ti3C2.
RESUMO
CoTe and CoTe2 nanorods with average diameter of 100 nm were synthesized by a simple hydrothermal process, and different CoTe2 nanostructures were obtained by changing the NaOH concentration. CoTe nanorods exhibit weak ferromagnetism while CoTe2 nanorods present paramagnetic behavior. Different magnetic behaviors occur in the other CoTe2 nanostructures due to Na+ entrance into CoTe2 crystals. A first-principles study on Na-doped CoTe2 confirms the magnetic characteristics.