Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731775

RESUMO

Almond hull, a substantial byproduct comprising more than half of almond fresh weight, has recently gained attention due to its functionality and sustainability benefits. Despite heightened interest, information regarding its toxicity remains limited. In order to assess its genotoxic potential, we conducted Good Laboratory Practice-compliant in vitro and in vivo studies following Organization for Economic Co-operation and Development (OECD) guidelines. No evidence of toxicity or mutagenicity was observed in a bacterial reverse mutation assay using five tester strains, evaluating almond hull at concentrations up to 5 mg/plate, with or without metabolic activation. Almond hull did not induce chromosome structural damage in a chromosome aberration assay using Chinese hamster ovary cells, nor did it cause any spermatogonial chromosomal aberration in tested male BALB/c mice. To evaluate its ability to induce DNA damage in rodents, a combined micronucleus assay was conducted in KM mice of both sexes. Almond hull was administered at doses of 1250, 2500, and 5000 mg/kg/day via gavage once daily for 2 days. No adverse effects of almond hull were observed in the micronucleus assay. Our results indicate no evidence of the genotoxic potential of almond hull administered up to the maximum concentrations of 5 g/kg, as recommended by OECD guidelines.

2.
Foods ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002169

RESUMO

Almond hull, a substantial byproduct constituting more than half of almond fresh weight, has garnered recent attention due to its abundance in fiber and bioactive content. Despite this huge interest, data on its toxicity remain scarce. In line with the Organization for Economic Cooperation and Development (OECD) 423 guidelines, this study conducted an acute oral toxicity test using almond hull powders processed from three major almond varieties of Butte, Monterey, and Nonpareil on BALB/c female mice, administering dosages of 300 mg/kg body weight (bw), 2000 mg/kg bw, and 5000 mg/kg bw, with observations over a 14-day period. The results indicated that almond hull powders were non-toxic, aligning with the Globally Harmonized System's classification. Administering up to 5000 mg/kg bw of all three varieties of almond hull powders (female BALB/c mice) and 10,000 mg/kg bw of Monterey almond hull powders (both female and male mice) induced no adverse effects in terms of mortality, body weight changes, food intake, organ to weight ratio, and clinical biochemistry. Additionally, histopathological examination revealed no organ abnormalities. This study demonstrates the non-toxic nature of almond hull as an edible food ingredient under experimental conditions, encouraging the further exploration of its potential for safe consumption and its health benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA