Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt A): 1087-1098, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39241470

RESUMO

Prussian blue analogs (PBAs) have attracted extensive attention in the field of aqueous organic degradation due to the tremendous potential for peroxydisulfate (PDS) activation. However, the relationship between the d-band center of the catalyst and the activation behavior of PDS remained largely unexplored. Herein, a series of Fe-Co PBAs-based catalysts with different Fe/Co ratios (Fe-Co PBAs-1 = 1: 0.52; Fe-Co PBAs-2 = 1: 1.21, and Fe-Co PBAs-3 = 1: 1.48) have been prepared by a facile hydrothermal procedure and subsequent acid treatment (Fe-Co PBAs-xH). The as-prepared Fe-Co PBAs-xH exhibited superior PDS activation performance and excellent recyclability in the degradation of methylene blue (MB). Density functional theory calculations revealed that the electron-occupied state of the Fe-Co PBAs was shifted to the Fermi level, indicating a strong interaction and easier electron transfer. Moreover, the d-band center of Fe-Co PBAs was upshifted relative to that of Fe PBAs, suggesting easier adsorption of MB and PDS, which was beneficial to enhancing catalytic activation and subsequent dissociation. Radicals such as •OH, 1O2, O2•-, and SO4•- were determined by the radical quenching experiment and electron paramagnetic resonance (EPR) testing in the Fe-Co PBAs-3H/PDS system, and the order of MB degradation by the free active radical is •OH > 1O2 > O2•- > SO4•-. The degradation pathway and potential ecotoxicity of MB and its intermediates were also studied. This work can provide new insights to construct the efficient catalysts for the activation of PDS and the degradation of organic pollutants.

2.
Plants (Basel) ; 13(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39204674

RESUMO

Soda saline-alkaline stress significantly impedes the rice grain filling process and ultimately impacts rice yield. Biochar has been shown to mitigate the negative impacts of saline-alkaline stress on plants. However, the exact mechanism by which biochar influences the rice grain-filling rate in soda saline-alkaline soil is still not fully understood. A two-year field experiment was conducted with two nitrogen fertilizer levels (0 and 225 kg ha-1) and five biochar application rates [0% (B0), 0.5% (B1), 1.5% (B2), 3.0% (B3), and 4.5% (B4) biochar, w/w]. The results demonstrated that biochar had a significant impact on reducing the Na+ concentration and Na+/K+ ratio in rice grown in soda saline-alkaline lands, while also improving its stress physiological conditions. B1, B2, B3, and B4 showed a notable increase in the average grain-filling rate by 5.76%, 6.59%, 9.80%, and 10.79%, respectively, compared to B0; the time to reach the maximum grain-filling rate and the maximum grain weight saw increases ranging from 6.02% to 12.47% and from 7.85% to 14.68%, respectively. Meanwhile, biochar, particularly when used in conjunction with nitrogen fertilizer, notably enhanced the activities of sucrose synthase (SuSase), ADPG pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE) of rice grains in soda saline-alkaline lands. Furthermore, rice yield increased by 11.95-42.74% in the B1, B2, B3, and B4 treatments compared to the B0 treatment. These findings showed that biochar improves yield by regulating ionic balance, physiological indicators, starch synthesis key enzyme activities, and the grain-filling rate in soda saline-alkaline paddy fields.

3.
Dalton Trans ; 51(45): 17192-17202, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314543

RESUMO

A novel Z-scheme heterostructure photocatalyst, CoFeN-g-C3N4 (CFN-CN), was prepared by a simple strategy, and its heterostructure and a photo-Fenton system were used to synergistically catalyze the degradation of azo dyes. The experimental results showed that the CFN-CN1 heterojunction exhibited superior photocatalytic degradation performance, and the degradation rate of Methyl Orange (MO) reached 96.8% in 40 min. The degradation rate constants were 11.8 and 2.81 times those of CN and CFN, respectively. CFN-CN1 also shows excellent catalytic degradation performance for other azo dyes (Congo Red (CR), Acid Orange 7 (AO7), Mordant Black 17 (MB17) and Acid Red B (ARB)), and the degradation efficiencies all exceeded 90%. Furthermore, the addition of inorganic anions (Cl-, HCO3- and SO42-) affects the degradation of azo dyes, especially HCO3- which significantly promotes the degradation of MO. The radical trapping experiments and EPR results indicated that superoxide radicals (˙O2-) and hydroxyl radicals (˙OH) were the main active species. The above research reveals that the CFN-CN heterojunction synergistic photo-Fenton system may provide new hints for the degradation and removal of azo dyes from wastewater.

4.
Dalton Trans ; 51(31): 11876-11883, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876113

RESUMO

Nano-ferroelectric materials have excellent piezoelectric performance and can degrade organic dye by ultrasonic vibration in an aqueous solution. Here, BaTiO3 (BT) nanoparticles were prepared by a sol-gel/hydrothermal method and further applied in dye degradation in wastewater. BT nanoparticles exhibited excellent catalytic performance for organic dye molecule degradation through the piezo-Fenton synergistic effect. It was found that both the degradation efficiency and reaction rate were boosted by the increase of the molecular weight of organic dyes. The degradation efficiency toward different organic dyes exhibited a trend of CR > ABK > TH > RhB > MB > MO. For example, a high piezo-Fenton-catalytic degradation ratio of 82.8% at 5 min and 0.337 min-1 rate constant were achieved for the CR dye solution (10 mg L-1), which were 3.2 and 6.4 times the corresponding values of piezo-catalytic only degradation. These results mainly originate from the intrinsic properties of BT nanoparticles that can enhance the separation of charge and promote the formation of hydrogen peroxide (H2O2) and hydroxyl radicals (·OH) under ultrasonic vibration. Furthermore, the reaction of Fe(II) with H2O2 can further enhance the formation of ·OH, which can accelerate the degradation of organic dyes. These results indicate that the piezo-Fenton synergistic effect may provide a new clue for the development of the wastewater treatment field under mechanical vibration.

5.
Sci Adv ; 8(15): eabk2925, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427159

RESUMO

Developing full-color organic ultralong room temperature phosphorescence (OURTP) materials with continuously variable afterglow emission is of considerable practical importance in diverse optoelectronic applications but remains a formidable challenge. Here, we present an effective strategy for on-demand engineering of afterglow color in water-soluble polymeric systems via efficient phosphorescence Förster resonance energy transfer. Using a blue afterglow emitting water-soluble polymer as host and a series of fluorescent emitters with varied emissive colors as guests, afterglow emission is rationally modulated, conferring the full-color afterglow emission ranging from blue to red and even white with ultralong lifetimes up to 4.2 s and photoluminescence quantum yields of 36%.These water-soluble multicolor-emitting polymeric afterglow systems can function as OURTP security inks, and multilevel information encryption was successfully established by RGB-based multicolor security printing. These results present important guidance in developing high-performance afterglow polymers with on-demand color tuning ability for remarkable optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA