Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 100(1): 183-200.e8, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30269986

RESUMO

Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRß mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitability by promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRß cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRß cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRß cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.


Assuntos
Quimiocina CCL2/metabolismo , Inflamação/metabolismo , Neuroimunomodulação/fisiologia , Pericitos/metabolismo , Animais , Colágeno Tipo I/biossíntese , Cadeia alfa 1 do Colágeno Tipo I , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Pericitos/citologia , Proteínas RGS/biossíntese , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Transmissão Sináptica/fisiologia
2.
Neuron ; 94(6): 1155-1172.e8, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28641114

RESUMO

The formation of functional synapses requires coordinated assembly of presynaptic transmitter release machinery and postsynaptic trafficking of functional receptors and scaffolds. Here, we demonstrate a critical role of presynaptic cadherin/catenin cell adhesion complexes in stabilizing functional synapses and spines in the developing neocortex. Importantly, presynaptic expression of stabilized ß-catenin in either layer (L) 4 excitatory neurons or L2/3 pyramidal neurons significantly upregulated excitatory synaptic transmission and dendritic spine density in L2/3 pyramidal neurons, while its sparse postsynaptic expression in L2/3 neurons had no such effects. In addition, presynaptic ß-catenin expression enhanced release probability of glutamatergic synapses. Newly identified ß-catenin-interacting protein p140Cap is required in the presynaptic locus for mediating these effects. Together, our results demonstrate that cadherin/catenin complexes stabilize functional synapses and spines through anterograde signaling in the neocortex and provide important molecular evidence for a driving role of presynaptic components in spinogenesis in the neocortex.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Caderinas/metabolismo , Adesão Celular , Espinhas Dendríticas/metabolismo , Neocórtex/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Piramidais/metabolismo , beta Catenina/metabolismo , Animais , Antígenos CD/metabolismo , Western Blotting , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Neocórtex/embriologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Sinapses/metabolismo
3.
Cell Res ; 27(6): 815-829, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429771

RESUMO

Studying the early function of essential genes is an important and challenging problem in developmental biology. Here, we established a method for rapidly inducing CRISPR-Cas9-mediated mutations in one blastomere of two-cell stage embryos, termed 2-cell embryo-CRISPR-Cas9 injection (2CC), to study the in vivo function of essential (or unknown) genes in founder chimeric mice. By injecting both Cre mRNA and CRISPR-Cas9 targeting the gene of interest into fluorescent reporter mice, the 2CC method can trace both wild-type and mutant cells at different developmental stages, offering internal control for phenotypic analyses of mutant cells. Using this method, we identified novel functions of the essential gene Tet3 in regulating excitatory and inhibitory synaptic transmission in the developing mouse cerebral cortex. By generating chimeric mutant mice, the 2CC method allows for the rapid screening of gene function in multiple tissues and cell types in founder chimeric mice, significantly expanding the current armamentarium of genetic tools.


Assuntos
Blastômeros/metabolismo , Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Embrião de Mamíferos/metabolismo , Engenharia Genética/métodos , Masculino , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
4.
Cell ; 162(4): 808-22, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26255771

RESUMO

Dendritic spines are postsynaptic compartments of excitatory synapses that undergo dynamic changes during development, including rapid spinogenesis in early postnatal life and significant pruning during adolescence. Spine pruning defects have been implicated in developmental neurological disorders such as autism, yet much remains to be uncovered regarding its molecular mechanism. Here, we show that spine pruning and maturation in the mouse somatosensory cortex are coordinated via the cadherin/catenin cell adhesion complex and bidrectionally regulated by sensory experience. We further demonstrate that locally enhancing cadherin/catenin-dependent adhesion or photo-stimulating a contacting channelrhodopsin-expressing axon stabilized the manipulated spine and eliminated its neighbors, an effect requiring cadherin/catenin-dependent adhesion. Importantly, we show that differential cadherin/catenin-dependent adhesion between neighboring spines biased spine fate in vivo. These results suggest that activity-induced inter-spine competition for ß-catenin provides specificity for concurrent spine maturation and elimination and thus is critical for the molecular control of spine pruning during neural circuit refinement.


Assuntos
Caderinas/metabolismo , Cateninas/metabolismo , Espinhas Dendríticas/metabolismo , Córtex Somatossensorial/citologia , Animais , Transtorno do Espectro Autista/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Caderinas/genética , Cateninas/genética , Camundongos , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Córtex Somatossensorial/metabolismo , Vibrissas/lesões
5.
Dev Neurobiol ; 75(8): 805-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25424568

RESUMO

The morphology of the dendritic tree is critical to neuronal function and neural circuit wiring. Several Wnt family members have been demonstrated to play important roles in dendrite development. However, the Wnt receptors responsible for mediating this process remain largely elusive. Using primary hippocampal neuronal cultures as a model system, we report that Frizzled4 (Fzd4), a member of the Fzd family of Wnt receptors, specifically signals downstream of Wnt5a to promote dendrite branching and growth. Interestingly, the less conserved distal PDZ binding motif of Fzd4, and not its conserved proximal Dvl-interacting PDZ motif, is required for mediating this effect. We further showed that Dvl signaled parallel to and independent of Fzd4 in promoting dendrite growth. Unlike most previously described pathways, Wnt5a/Fzd4 signaling promoted dendrite development in an activity-independent and autocrine fashion. Together, these results provide the first identification of a Wnt receptor for regulating dendrite development in the mammalian system, and demonstrate a novel function of the distal PDZ motif of Fzd4 in dendrite morphogenesis, thereby expanding our knowledge of the complex roles of Wnt signaling in neural development.


Assuntos
Dendritos/fisiologia , Receptores Frizzled/metabolismo , Proteínas Wnt/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/metabolismo , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Wnt-5a
6.
Nat Neurosci ; 17(3): 391-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464043

RESUMO

Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.


Assuntos
Plasticidade Neuronal/fisiologia , Ocitocina/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Animais Recém-Nascidos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocitocina/administração & dosagem , Ocitocina/farmacologia , Privação Sensorial/fisiologia , Transdução de Sinais/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/metabolismo , Transmissão Sináptica/fisiologia
7.
PLoS One ; 7(12): e52788, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285183

RESUMO

Our laboratory once reported that neuronal nitric oxide synthase (nNOS) S-nitrosylation was decreased in rat hippocampus during cerebral ischemia-reperfusion, but the underlying mechanism was unclear. In this study, we show that nNOS activity is dynamically regulated by S-nitrosylation. We found that overexpressed nNOS in HEK293 (human embryonic kidney) cells could be S-nitrosylated by exogenous NO donor GSNO and which is associated with the enzyme activity decrease. Cys(331), one of the zinc-tetrathiolate cysteines, was identified as the key site of nNOS S-nitrosylation. In addition, we also found that nNOS is highly S-nitrosylated in resting rat hippocampal neurons and the enzyme undergos denitrosylation during the process of rat brain ischemia/reperfusion. Intrestingly, the process of nNOS denitrosylation is coupling with the decrease of nNOS phosphorylation at Ser(847), a site associated with nNOS activation. Further more, we document that nNOS denitrosylation could be suppressed by pretreatment of neurons with MK801, an antagonist of NMDAR, GSNO, EGTA, BAPTA, W-7, an inhibitor of calmodulin as well as TrxR1 antisense oligonucleotide (AS-ODN) respectively. Taken together, our data demonstrate that the denitrosylation of nNOS induced by calcium ion influx is a NMDAR-dependent process during the early stage of ischemia/reperfusion, which is majorly mediated by thioredoxin-1 (Trx1) system. nNOS dephosphorylation may be induced by the enzyme denitrosylation, which suggest that S-nitrosylation/denitrosylation of nNOS may be an important mechanism in regulating the enzyme activity.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Apoptose , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Cálcio/metabolismo , Cistina/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Masculino , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/química , Fosforilação , Ratos , Traumatismo por Reperfusão/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA